3E – A new paradigm for the development of civil aviation
Marek ORKISZ 1  
More details
Hide details
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology.
Publication date: 2020-05-20
Submission date: 2020-01-25
Final revision date: 2020-04-06
Acceptance date: 2020-04-10
Combustion Engines 2020,181(2), 3–10
AYAR, M., GULEREN, K.M, KARAKOC, T. Motor selection process with ahp on mini electric UAV. International Symposium on Electric Aviation and Autonomous Systems (ISEAS), 2018.
BREJLE, B., MARTINS, J. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Aerospace Sciences: article in progress; https://doi.org/10.1016/j.paer....
DE VRIES, R. Preliminary sizing of a hybrid-electric passenger aircraft featuring over-the-wing distributed-propulsion. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2019....
DONATEO, T., SPEDICANTO, L. Fuel economy of hybrid electric flight. Applied Energy. 2017, 206, 723-738.
FERMANN, Y. et al. Hybrid-electric motive power systems for commuter transport applications. ICAS 2016.
FILLIPPONE, A. Fixed and rotary wing aircraft. Butteeorth-Heinemann 2006, USA.
FINGER, F.D. et al. A review of configuration design for distributed propulsion transitioning VTOL aircraft. 2017 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018).
FINGER, F.D. et al. On aircraft design under the consideration of hybrid-electric propulsion systems. 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018).
FINGER, F.D., BRAUN, C. Case studies in initial sizing for hybrid-electric general aviation aircraft. 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. https://doi.org/10.2514/6.2018....
FINGER, F.D., BRAUN, C. Impact of engine failure con-straints on the initial sizing of hybrid-electric GA aircraft. AI-AA Scitech 2019 Forum, San Diego. https://doi.org/10.2514/6.2019....
FINGER, F.D., BRAUN, C., CEES, B. Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs. CEAS Aeronautical Journal. 2019, 10, 827-843.
GEISS, I., STROHMAYER, A., et al. Optimized operation strategies for serial hybrid-electric aircraft aviation technolo-gy. Integration, and Operations Conference 2018. https://doi.org/10.2514/6.2018....
FINGER, F.D., CEES, B.,BRAUN, C., Initial sizing methodology for hybrid-electric general aviation aircraft. Journal of Aircraft. 2019 (published online). https://doi.org/10.2514/1.C035....
GOTTEN, F., FINGER, F.D., BRAUN, C. Empirical correlations for geometry build-up of fixed wing unmanned air. 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018).
HOELZEN, J. et al. Conceptual design of operation strategies for hybrid electric aircraft. Energies. 2018, 11/217. https://doi.org/10.3390/en1101....
HOELZEN, J. et al. Hybrid electric aircraft propulsion case study for skydiving mission. Aerospace. 2017, 4/45. https://doi.org/10.3390/aerosp....
ISIKVEREN, A. The method of quadrant based algorithmic nomographs for hybrid/electric aircraft pre-design. Journal of Aircraft. 2017. https://doi.org/10.2514/1.C034....
KAI, N. et al. Electrical and electronic technologies in more- electric aircraft: a review. IEEE Access. 2019. https://doi.org/10.1109/ACCESS....
KIRNER, R. et al. An assessment of distributed propulsion: Part B – Advanced propulsion system architectures for blended wing body aircraft configurations. Aerospace Science and Technology. 2016, 50, 212-219.
KUŹNIAR, M., ORKISZ, M. Analysis of the application of distributed propulsion to the AOS H2 motor glider. Journal of Kones. 2019, 26(2), 85-92.
LIU, C., DOULGERIS, G., PANAGIOTIS, L. et al. Turboelectric distributed propulsion system modelling for hybrid-wing-body aircraft. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2012
LIU, C., XIAYI, S. Method to explore the design space of a turbo-electric distributed propulsion system. Journal Aerospace Engineering. 2016. https://doi.org/10.1061/(ASCE)....
ŁUKASIK, B. Analysis of the possibility of using full-electric, hybrid and turbo-electric technologies for future aircraft propulsion systems, in terms of mission energy con-sumption, NOx/CO2 emission and noise reduction. Doctoral Thesis. Instytut Lotnictwa 2018.
PAWLAK, M., KUŹNIAR, M. Analysis of the wind dependent duration of the cruise phase on jet engine exhaust emissions. Journal of Kones. 2018, 25(3), 371-376.
PAWLAK, M., MAJKA, A., KUŹNIAR, M. et al. Emission of selected exhaust compounds in jet engines of a jet aircraft in cruise phase. Combustion Engines. 2018, 173(2), 67-72.
PAWLAK, M., KUŹNIAR, M. Determination of CO2 emis-sions for selected flight parameters of a business jet aircraft. Journal of Kones. 2019, 26(3), 155-163.
PAWLAK, M., KUŹNIAR, M. Problematyka emisji toksycznych składników spalin silników lotniczych. Autobusy. 2017, 12, 338-344.
PAWLAK, M., MAJKA, A., KUŹNIAR, M. et al. Analysis of wind impact on emission of selected exhaust compounds in jet engines of a business jet aircraft in cruise phase. Combustion Engines. 2018, 173(2), 55-60.
PAWLAK, M. Metoda modelowania emisji związków szkodliwych w spalinach silników odrzutowych samolotów pasażerskich w warunkach przelotowych. Uniwersytet Morski w Gdyni 2019.
RINGS, R, FLINGER, F.D. et al. Sizing studies of light aircraft with parallel hybrid propulsion systems. 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT2018).
STOLL, A.M., BEVIRT, J., MOORE, M. et al. Drag reduc-tion through distributed electric aviation technology. Integration, and Operations Conference. 2014.
VRATNY, P., HORNUNG, M. Sizing considerations of an electric ducted fan for hybrid energy aircraft. Transportation Research Procedia. 2018. https://doi.org/10.1016/j.trpr....
https:// airbus.com/.