KEYWORDS
TOPICS
ABSTRACT
Two-stroke engines are distinguished by the highest overall efficiency among all main engines. This is not only due to the low speed, and large piston stroke, but also to the high combustion temperature, which result in an increase in nitrogen oxides (NOx) emission. Technical solutions applied to bring main engines into compliance with current NOx emission standards set by the Tier III limits include the use of SCR and EGR systems, the implementation of the Otto cycle, and the application of liquified natural gas (LNG) as the low-emission fuel. Impact of the available Tier III-compliant technologies on the heat balance results is analysed using the example of the currently most popular dual-fuel main engines, i.e. WinGD X92DF and MAN G95ME-C10.5-GI. The possibilities of waste heat recovery in the electricity generation process and thereby improving the ship energy efficiency are discussed.
 
REFERENCES (24)
1.
Andreasen JG, Meroni A, Haglind F. A comparison of organic and steam Rankine cycle power systems for waste heat recovery on large ships. Energies. 2017;(10):547. https://doi.org/10.3390/en1004....
 
2.
Brzeżański M, Mężyk P. Heat balance of the military vehicle. Combustion Engines. 2017;170(3):131-134. https://doi.org/10.19206/CE201....
 
3.
Hochgreb S. Handbook of Air Pollution from Internal Combustion Engines. Academic Press. San Diego 1998.
 
4.
International Maritime Organisation. IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation, Module 2 – Ship Energy Efficiency Regulations and Related Guidelines. https://www.imo.org/en/OurWork... (accessed on 24.11.2022).
 
5.
Ivanova G. Analysis of the specifics in calculating the index of existing marine energy efficiency EEXI in force since 2023. 2021 13th Electrical Engineering Faculty Conference. 2021:1-4. https://doi.org/10.1109/BulEF5....
 
6.
Kniaziewicz T, PiasecznyL. Selected aspects of application of dual fuel marine engines. Combustion Engines. 2021;148(1):25-34. https://doi.org/10.19206/CE-11....
 
7.
Korlak PK. Prediction of the ultra-large container ships’ propulsion power at the initial design stage. Communications – Scientific Journals of the University of Zilina. 2022;24(3):228-238. https://doi.org/10.26552/com.C....
 
8.
Korlak PK. Prediction of the very- and ultra-large container ships’ electricity generation capacity at the initial design stage. Naše More. 2022;69(2):103-113. https://doi.org/10.17818/NM/20....
 
9.
Krakowski R. The emissions reduction possibility of sulphur compounds of vessel sailing in Emission Control Area (ECA). Combustion Engines. 2017;169(2):162-166. https://doi.org/10.19206/CE-20....
 
10.
Latarche M. Pounder’s marine diesel engines and gas turbines.Tenth edition. Elsevier Science. Oxford 2020.
 
11.
Liberacki R. Niekonwencjonalne metody odzysku ciepła odpadowego na statkach. Journal of Polish CIMEEAC. 2019;(14). http://www.polishcimeeac.pl/Pa....
 
12.
MAN Diesel & Turbo. Costs and benefits of LNG as ship fuel for container vessels. Copenhagen 2013.
 
13.
MAN Diesel & Turbo. Tier III two-stroke technology. Copenhagen 2013.
 
14.
MAN Diesel & Turbo. Waste Heat Recovery System (WHRS) for reduction of fuel consumption, emissions and EEDI. Copenhagen 2017.
 
15.
MAN Energy Solutions. Marine engine programme 2022. Copenhagen 2022.
 
16.
Molland AF. The Maritime Engineering Reference Book. Elsevier Science. Oxford 2008.
 
17.
Mondejar ME, Andreasen JG, Pierobon L, Larsen U, Thern M, Haglind F. A review of the use of organic Rankine cycle power systems for maritime applications. Renew Sust Energ Rev. 2018;(91):126-151. https://doi.org/10.1016/j.rser....
 
18.
Sagin S, Kuropyatnyk O, Sagin A, Tkachenko I, Fomin O, Píštěk V, Kučera P. Ensuring the Friendliness of Drillships during Their Operation in Special Ecological Regions of Northern Europe. J Mar Sci Eng. 2022;(10):1331. https://doi.org/10.3390/jmse10....
 
19.
Singh DV, Pedersen E, A review of waste heat recovery technologies for maritime applications. Energ Convers Manage.2016;(111):315-328. https://doi.org/10.1016/j.enco....
 
20.
Szelangiewicz T, Żelazny K. CO2 emission level as a criterion in modern transport ship design. Combustion Engines. 2014;156(1):59-68. https://doi.org/10.19206/CE-11....
 
21.
WinGD. Low-pressure X-DF engines FAQ. Winterthur 2020.
 
22.
WinGD. Low-speed engines 2022. Winterthur 2022.
 
23.
WinGD. Selective Catalytic Reduction FAQ. Winterthur 2020.
 
24.
Wojnowski W. Okrętowe siłownie spalinowe. Cz. I. Wydawnictwo Akademii Marynarki Wojennej w Gdyni. Gdynia 1998.
 
 
CITATIONS (1):
1.
Complex Use of the Main Marine Diesel Engine High- and Low-Temperature Waste Heat in the Organic Rankine Cycle
Sergejus Lebedevas, Tomas Čepaitis
Journal of Marine Science and Engineering
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top