The selection of the engine unit – main engine generator during the modernization of the 19D/TEM2 locomotive

The paper aims to present a generating set selection methodology for a modernized diesel locomotive. An analysis of the number of rolling stock, with particular emphasis on the number of diesel locomotives owned by national carriers was performed. Based on the popularity of the locomotives operated on Polish railways, the TEM2 locomotive was chosen to be the base reference for the modernized 19D locomotive described in the paper. The scope of the locomotive’s modernization was described. Modernization included: replacement of the internal combustion engine, replacement of the generator set, installation of a new braking system with a pneumatic board and air preparation and treatment system, application of a modern control and diagnostics system with anti-slip system at start-up and braking, and the installation of railway traffic safety devices.

Key words: railway, diesel locomotive, modernization, CFD simulation, exhaust emission

1. Introduction

Road transport is not the only branch of transport subject to strict restrictions, whereby it is required to meet said restrictions in tests performed to estimate the environmental impact of vehicles [4, 24]. The legal regulations in force [8] and the exhaust emission norms [7] force carriers to invest in improving the technical condition, reducing the environmental impact [5, 10] and increasing the efficiency of vehicles in operation, including diesel locomotives. Meeting these types of requirements is possible in several ways, ranging from innovative technical solutions [2, 16, 17], the purchase of new units, renovation and repair of older units or through retrofitting in the ecological aspect [18]. One of the solutions combining economic benefits with improved technical condition of the vehicle is its modernization [11, 12, 20, 22]. This type of operation can include a wide range of activities. It may consist of only single changes [14] such as replacement of the drive unit with a newer one that meets the applicable exhaust emission standards or it may include a thorough modernization of the entire vehicle.

This article describes the modernization process of the type 19D locomotive series SM48 (TEM2) (Fig. 1).

The six-axle, single-cabin locomotive was constructed with the CoCo system. In the original version, it had an electric transmission and an 880 kW internal combustion engine. The unit was produced in the USSR and was intended for servicing the eastern border regions. It was used for heavy shunting and reloading works. After the Polish rail safety systems have been installed [6], it is also possible to use it in a freight train. Some of the manufactured units were adapted to move on tracks with a rail gauge of 1435 mm and 1520 mm. Shifting to a different track is possible by replacing the wheelsets.

After thorough analyzes of the technical condition and parameters of the locomotive a decision was made to modernize the described vehicle. It was decided that a complete modernization of the vehicle would be performed. This meant replacing all the main assemblies of the locomotive. The exceptions were the frames and bogies with drive systems. After major repairs were carried out, the original technical condition of the locomotive was reached and the vehicle modernization was considered complete.

Activities related to the thorough modernization of the SM48 (TEM2) diesel locomotive included:

− Performing numerical simulations and analyzes to determine the technical and operational parameters of the main devices, machines, apparatus and generating sets that could be used in the locomotive,
− Development, manufacturing and commissioning of models of the main units and systems,
− Performing control tests of the main units and systems,
− Development of a project of vehicle fitting with devices and systems,
− Installing the necessary devices and systems in the locomotive,
− Construction and preparation of acceptance requirements and preparation of acceptance procedures,
− Development and preparation of technical documentation for the modernized locomotive,
− Performing stationary vehicle tests,
Performing dynamic vehicle tests,
Preparation of legal procedures in order to obtain documented permissions for taking part in rail traffic,
Launching the procedures related to type approval and operational tests.

2. Polish rail market overview

According to statistical data [1], rail transport is a dynamically developing branch of transport in Poland. Since 2010, there has been an increase in performed operational work by 17% (Fig. 2). In the case of freight transport, according to [27], the annual forecast volume dynamics of the total demand for freight transport in rail transport is to increase depending on the scenario, from 13.4% to even 25% (Fig. 3) by 2030. Even considering the most pessimistic forecast, this will translate into a significant increase in rail transport.

The growing demand for rail transport in Poland is realized on the railway lines, whose total length is 19,235 km [25]. With this value, there are 6.2 km of railway lines per every 100 km² of the country's land area. Presented as ratio of rail line length per 10 thousand people, this value is 5 km. The density of the railway network in Poland is not high when compared, for example, to the situation in the neighboring country – the Czech Republic – where the same indicators are almost twice as high [13]. The electrified lines in Poland with a total length of 11,894 km constitute 62% of the total network size. However, electrification (Fig. 4) and the density of railway lines in the country are not uniform. Especially in the areas of eastern Poland, the share of railway lines with electric traction has a low percentage. For example, in the Podlaskie Voivodeship the electric traction is only 219 km out of 759 km (29%), in the Lubelskie Voivodeship 416/1048 km (40%), and in the Podkarpackie Voivodeship 370/978 km (38%) [25]. This means that only rail vehicles equipped with a drive system that can operate independent of electric traction can travel on most of the railway routes in these areas. In practice, this means locomotives and multiple units equipped with diesel engines.

The planned increase in the number of rail transport operations, both passenger and freight, requires carriers to have an appropriate sized rolling stock, including units that can operate fully independent of electric traction. In addition, the demand for rail transport will also increase the amount of shunting work performed mainly by rail vehicles with a diesel engine. Currently, 109 diesel passenger locomotives and 269 diesel traction units are used in passenger transport [21]. In the case of freight rolling stock in Poland, there is a constant trend of increasing use of diesel locomotives, characterized by greater operating autonomy, compared to electric locomotives [26] (Fig. 5).

In Poland, the most frequently used rolling stock was manufactured between 1970 and 1980. This means that a large part of the locomotives were still manufactured in the times when there were no exhaust emission norms or...
when the regulations in force related to the reduction of engine exhaust emissions were very liberal. The average age of freight diesel locomotives in Poland is 36.9 years [26], and passenger diesel locomotives 41.7 years [21]. Additionally, worn-out shunting locomotives constitute a large share of diesel locomotives in the country. As a result, in 2018 over 80% of diesel locomotives were over 40 years old [15]. Due to the significant age of rail vehicles and the continuous aging process, rail carriers have been increasing the locomotive utilization index since 2016 in order to improve the efficiency of their operation and work organization (Fig. 6). These activities translated into a relative increase of the discussed indicator by 18.9% from 2016.

A significant portion of the rolling stock in Poland is at an advanced stage of wear and tear. This situation is pointed out by the President of the Office of Rail Transport in Poland: “The figures provided show how large the scale of rolling stock investments is needed in the upcoming 10 years” [15]. For this reason, the Ministry of Infrastructure introduced the National Railway Program that is to last until 2023, which includes a number of railway investments [19]. The effects of the project include planned investments in rolling stock. By 2023, investments of approximately € 360 million are expected to cover 116 electric locomotives and 168 diesel locomotives (Fig. 7). In the case of diesel locomotives, the operations are to include renovation and modernization of old vehicles, purchase of used vehicles, lease and purchase of new vehicles (Fig. 8).

3. Locomotive modernization process

3.1. Extent of works

Modernization works are a very complex processes that require vast knowledge and an experienced team of specialists and engineers from the railway sector. The TEM2 locomotive modernization project was created by the Łukasiewicz Research Network – Institute of Rail Vehicles “TABOR” in Poznań. All repair and modernization works were carried out by Pojazdy Szynowe PESA Bydgoszcz S.A.

The project included a number of activities related to the overhaul of the frames and bogies, as well as modifications that allowed for the installation of a new drive system and body. The most important of them were:

- Replacing the drive system,
- Installation of a new, autonomous driver’s cab with two independent desks and seats, control cabinets, cameras facilitating operation and improving safety,
- Installation of the control and diagnostics system,
- Replacement of the pneumatic control cabinet,
- Installation of a new anti-slip system when starting and braking,
- Installation of a new air preparation and treatment system with a screw compressor driven by an electric motor,
- Installation of devices related to safety in motion and devices related to radio communication,
- Installation of electronic recorders of operating parameters and speedometers, including the ability of remote viewing of selected data,
- Modernization of the brake lever system on the bogey,
- Installation of a permanent fire control system with aerosols.

3.2. Generator set

One of the main goals of the modernization process was to replace the engine unit. The worn-out PD1M combustion engine manufactured in the USSR was replaced with a type 12V4000R84 MTU engine. This engine has a power of 1800 kW at 1800 rpm and dimensions of 2675×1700×2005 mm, dedicated to rail transport, meets the Stage IIIB emission norms [3]. The generator set was also replaced along with the internal combustion engine – the main generator.
and the auxiliary JENOPTIK generator, and a built-in rectifier. The main generator, adapted to the specific working conditions in railway vehicles, had a rated power of 1800 kW. The generator's operating range was between 600 and 1800 rpm. The maximum current was 6600 A, and the maximum voltage was 750 V. The 120 kW synchronous auxiliary generator with a voltage of 3×450 V AC was directly flanged to the main generator. Figure 9 shows the generating set before and after the modernization.

The process of replacing the main engine was highly complex. The installation of the internal combustion engine gave rise to many construction and design challenges that had to be completely resolved during the modernization of the locomotive. The installation of a modern engine concerned not only the main propulsion unit but also connected devices and secondary systems. Examples include the power supply system, the cooling system with the pre-heater system and the hydrostatic fan, the exhaust system with the Diesel Particle Filter (DPF), and the air intake system with its filters. The installation of the internal combustion engine also required precise data from the manufacturer on the engine attachment method to the locomotive's frame, couplings of the engine with the generator set, and mounting of the hydrostatic pump of the radiator fan drive. Data on the values of maximum negative pressures in the fuel systems and air consumption in various operating conditions were also required. The MTU 12V4000R84 internal combustion engine attached to the frame with peripheral devices is shown in Fig. 10.

3.3. Selection of the intake duct

The constructors' task was to meet the requirements specified by the manufacturer. Verification of the correct operation of individual systems was also possible thanks to simulations and computer analyses. They ensure the correct speed of operation and eliminate the need to carry out some of the time-consuming and costly bench and dynamic tests.

An example of how analyses and computer simulations can be used in the design phase of the modernized locomotive were CFD (Computational Fluid Dynamics) simulations of air intake necessary for the combustion process. The installation of the new internal combustion engine required the design of an air intake duct to have an optimal shape that connects the engine turbocharger with air filters. The duct had to have a sufficiently low level of flow resistance, which was to make it easier to cover the air demand. The turbocharger is able to take the required amount of air into the inlet channel with a new filter installed only for pressure drops not greater than 2500 Pa. In the case of a dirty filter, the pressure drops may not exceed 3500 Pa. The new air filter generates a pressure drop of 1000 Pa for the air flow of 1.1 m³/s. Therefore, the airflow through the duct with the new filter can operate correctly with a pressure drop of 1500 Pa in the inlet ducts. Due to the lack of space when installing the engine, it was necessary to use a strong bend of the inlet channel with a radius of 200 mm. The inlet conduit at the bend was a flexible hose with a length of 500 mm. According to the manufacturer's specification, the pipe had a smooth surface, therefore, for simulation purposes, it was decided to model this element as a steel pipe.

Three configurations of the inlet channel were created and labelled: A, B and C. Numerical models 1, their divi-
The selection of the engine unit – main engine generator during the modernization of the 19D/TEM2 locomotive

4. Results of modernization

After modernization the SM48 (TEM2) locomotive was designated as 19D. The new design adopted a modular structure for the locomotive. Thus, the vehicle has been built into block sections that could be mounted independently. The design was divided into: refrigeration-compressor, generator set, driver’s cab, and electro-pneumatic (Fig. 12) compartments. The internal combustion engine with the generator – the generator set compartment – were installed on the underframe. The compressor set, the traction cabinet and fans of the traction motors were also attached to the body frame. The remaining sections were made so that they could be lifted with an overhead crane during service and maintenance work. In addition, the modules were equipped with flaps, multi-wing doors and removable roofs to facilitate access and accelerate the replacement of damaged elements. Figure 13 shows the arrangement of the main devices in the locomotive. The modular construction of the locomotive allowed for the acceleration of design and production works, and also allowed for the efficient preparation of construction and technical documentation.
The selection of the engine unit – main engine generator during the modernization of the 19D/TEM2 locomotive

Fig. 12. Arrangement of the main compartments on the 19D locomotive (left and top view)

1. generator with MTU combustion engine,
2. exhaust muffler with a particulate filter,
3. exhaust outlet pipe,
4. fans of the machinery section – power generator,
5. air intake system for the combustion engine with air filters,
6. regulation tank of the internal combustion engine cooling system,
7. cooler system,
8. fans of the combustion engine cooling system,
9. WEBASTO water heaters,
10. REBS system for wheel flange lubrication,
11. pneumatic board and auxiliary air tanks,
12. JENOPTIK converter cabinet,
13. devices of the MV and LV cabinets,
14. fan of traction motors
 – bogey I,
15. fan of traction motors
 – bogey II,
16. driver’s cabin air conditioner – cooler,
17. water basin water tank,
18. fuel tank,
19. fuel pre-filter,
20. air compressor with air treatment system, compressor control system,
21. system of external cameras,
22. batteries,
23. halogen and LED headlights,
24. multi-control sockets,
25. SHP electromagnets,
26. GPS antenna,
27. radio control antenna,
28. sandbox,
29. main air tanks.

Fig. 13. Arrangement of the main components on the 19D locomotive
The selection of the engine unit – main engine generator during the modernization of the 19D/TEM2 locomotive

The 19D locomotive, after modernization, had a maximum power of 1350 kW at the wheel circumference, a tractive force of 122 kN and a tractive starting force of 455 kN. The vehicle could travel with a continuous speed of 40 km/h. Additionally, the designers made sure that the locomotive could be operated with multiple traction as an option. A summary of the basic locomotive parameters before and after the modernization was presented in Table 1.

The modernization of the 19D locomotive in terms of the drive system was planned in an effort to meet the requirements of the Stage IIIB exhaust emission norms, according to Directive 2004/26/EC of the European Parliament, in the scope of limiting the exhaust emission of gaseous pollutants and particulates [9]. The modern MTU 12V4000R84 engine installed in the locomotive meets the above-mentioned limits. The worn-out PD1M unit, which was replaced from the vehicle, met the exhaust emission limits specified in the ORE B13 standard, which was in force until 1981. The presented test was carried out in real operating conditions (Fig. 14). There is a large range of variability of the parameters (in terms of rotational speed and load). The conditions have a negative impact on the emission of pollutants, as presented in the paper [23]. The obtained results were compared with the standards for which tests are performed under steady engine operating conditions.

![Fig. 14. Example of exhaust emission for a diesel engine of the locomotive SM48 (19D)](image)

Table 1. Basic locomotive parameters before and after modernization

<table>
<thead>
<tr>
<th>No.</th>
<th>Device, parameter</th>
<th>Unit</th>
<th>Before modernization</th>
<th>After modernization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Base locomotive manufacturer</td>
<td>–</td>
<td>USSR MZ Briańsk</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Type</td>
<td>–</td>
<td>TEM2</td>
<td>19D</td>
</tr>
<tr>
<td>3.</td>
<td>Service weight of the locomotive</td>
<td>[Mg]</td>
<td>118</td>
<td>3%</td>
</tr>
<tr>
<td>4.</td>
<td>Top speed</td>
<td>[km/h]</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Transmission type</td>
<td>–</td>
<td>electric</td>
<td>electric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC–DC</td>
<td>AC–DC</td>
</tr>
<tr>
<td>6.</td>
<td>Brake</td>
<td>main</td>
<td>Matrosow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>parking</td>
<td>spring</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Traffic safety devices</td>
<td>–</td>
<td>none</td>
<td>SHP, CA, RS</td>
</tr>
<tr>
<td>8.</td>
<td>Combustion engine manufacturer</td>
<td>–</td>
<td>USSR</td>
<td>MTU</td>
</tr>
<tr>
<td></td>
<td>type</td>
<td>–</td>
<td>PD1M</td>
<td>12V–4000 R84</td>
</tr>
<tr>
<td></td>
<td>rated power</td>
<td>[kW]</td>
<td>883</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>engine speed</td>
<td>[rpm]</td>
<td>750</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>exhaust emissions</td>
<td>–</td>
<td>No data</td>
<td>EU 26/2004 stage III B</td>
</tr>
<tr>
<td></td>
<td>fuel consumption</td>
<td>g/kWh</td>
<td>229</td>
<td>202.7%</td>
</tr>
<tr>
<td></td>
<td>lubricant consumption</td>
<td>g/kWh</td>
<td>No data</td>
<td>0.2% of the fuel consumed</td>
</tr>
<tr>
<td>9.</td>
<td>Main generator manufacturer</td>
<td>–</td>
<td>USSR</td>
<td>JENOPTIK</td>
</tr>
<tr>
<td></td>
<td>type</td>
<td>–</td>
<td>GP-300HU2</td>
<td>SDV 95.50–12</td>
</tr>
<tr>
<td></td>
<td>continuous rated power</td>
<td>[kW]</td>
<td>780</td>
<td>1800</td>
</tr>
<tr>
<td>10.</td>
<td>Auxiliary generator manufacturer</td>
<td>–</td>
<td>USSR</td>
<td>JENOPTIK</td>
</tr>
<tr>
<td></td>
<td>continuous rated power</td>
<td>[kW]</td>
<td>MWG-25/IIIU2</td>
<td>SDV 60.26–12</td>
</tr>
<tr>
<td></td>
<td>5.75</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Traction motors type</td>
<td>–</td>
<td>ED 118 AU2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>continuous rated power</td>
<td>kW</td>
<td>105</td>
<td>–245</td>
</tr>
<tr>
<td>12.</td>
<td>Control circuit voltage</td>
<td>[V]</td>
<td>75</td>
<td>24</td>
</tr>
<tr>
<td>13.</td>
<td>Control system</td>
<td>–</td>
<td>electric</td>
<td>digital</td>
</tr>
<tr>
<td>14.</td>
<td>Air compressor type, supply</td>
<td>piston, from the crankshaft</td>
<td>electric motor, 3×400 V<sub>AC</sub>, 22 kW</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>air output</td>
<td>m³/min</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Radiator fan drive</td>
<td>–</td>
<td>Cardan shaft</td>
<td>hydrostatic – stepless speed control</td>
</tr>
<tr>
<td>16.</td>
<td>traction motors fans drive</td>
<td>–</td>
<td>belt transmission</td>
<td>electric motor, 3×400 V<sub>AC</sub></td>
</tr>
<tr>
<td>17.</td>
<td>Driver’s cab</td>
<td>–</td>
<td>new equipment that meets the current requirements in terms of ergonomics and work safety</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Fixed fire extinguishing device in the engine compartment</td>
<td>–</td>
<td>none</td>
<td>aerosol generator</td>
</tr>
</tbody>
</table>
5. Conclusions

The 19D locomotive project is an example of how the 3D environment can be used in design and construction works. By creating the locomotive model, and performing analyzes and simulations the work was significantly accelerated, which contributed to reducing the overall costs of vehicle modernization. In the described locomotive, moderated, which contributed to reducing the overall costs of analyzes and simulations the work was significantly accelerated.

The main aim of the article was to present the activities related to the modernization of the SM48 (TEM2) locomotive, in particular the equipment used and the work carried out on the vehicle drive system. The modernized locomotive was characterized by low environmental impact. The use of the modern 12V4000R84 internal combustion engine manufactured by MTU, which meets the Stage IIIB emission norms, has significantly reduced the generated exhaust emissions. The drive unit was characterized by lower specific fuel consumption – 202 g/kWh – and consequently higher efficiency. In addition, the new engine has twice the power of the previous one. As a result of the modernization, the 19D locomotive is the locomotive with the highest rated power of this type in Poland. The vehicle was put into use by carriers, where it currently performs the most difficult maneuvering and shunting works and is used to move heavy freight trains.

To sum up, given the current technical condition of the railway infrastructure and rolling stock, as well as its average age, the modernization of rail vehicles in Poland is a procedure necessary to improve the technical level, reliability and operating safety of the existing rolling stock. In addition, this type of activity increases the drivers work comfort as well as making the vehicle maintenance easier. For this reason, the purchase of new units, along with renovation and modernization of older rolling stock should be a permanent part of the activity of the railway carriers in Poland.

Acknowledgements

Applied Research Program 3 No PBS3/B6/33/2015 titled: „Platform of modernized combustion 6-axle locomotives meeting the requirements of European Union with using locomotives operated in the country”.

Nomenclature

CFD	Computational Fluid Dynamics
DPF	Diesel Particle Filter
Stage IIIB	European Non-Road Emission Standard
MTU	A manufacturer of internal combustion engines
ORE B13	A regulation of emission limits
SHP	Automatic braking system
REBS	A manufacturer in Germany
EGR	Exhaust Gas Recirculation
LT/HT	Low Temperature/High Temperature
POM	Power Output Module

Bibliography

[14] MIKLASZ, R., MILECKI, S. Modernization of the TEM2 locomotive bogies with the aim of reducing operational con-
The selection of the engine unit – main engine generator during the modernization of the 19D/TEM2 locomotive

Pojazdy Szynowe. 2017, 1, 44-52.

https://doi.org/10.1088/1757-899X/421/4/042064

e-mail: piotr.michalak@tabor.lukasiewicz.gov.pl

e-mail: wlodzimierz.stawecki@tabor.lukasiewicz.gov.pl

e-mail: pawel.daszkiewicz@tabor.lukasiewicz.gov.pl

Prof. Jerzy Merkisz, DSc., DEng. – Faculty of Civil and Transport Engineering, Poznan University of Technology.
e-mail: jerzy.merkisz@put.poznan.pl

e-mail: maciej.andrzejewski@tabor.lukasiewicz.gov.pl

https://doi.org/10.1109/IWED48848.2020.9069576

[23] Rymaniak, Ł. Comparison of the combustion engine operating parameters and the ecological indicators of an urban bus in dynamic type approval tests and in actual operating conditions. MATEC Web of Conferences. 2017, 118.
https://doi.org/10.1051/matecconf/201711800009

