Analysis of the selection of chosen technical parameters of the powertrain system for a diesel-electric rail-road tractor

The article presents the results of a simplified analysis of the feasibility of designing a rail chassis of a two-way tractor with an internal combustion or electric drive. Basic traction and operating parameters have been assumed for which the road-rail tractor could operate in an effective manner. On their basis, strength calculations were carried out and mechanical elements of the drive system meeting the required assumptions were selected. All the calculations presented in the text were fulfilled. The technical feasibility of building the mechanical part of the rail running gear of a rail-road tractor driven by an internal combustion engine or electric motors has been demonstrated.

Key words: rail-road tractor, electric drivetrain, zero emission, rail chassis, diesel-electric vehicle

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The increasingly restrictive exhaust emission norms [9] force vehicle manufacturers to reduce the exhaust emissions [51, 52] and the fuel consumption [38] of their products. This also applies to manufacturers of rolling stock [45] where, in order to be permitted into operation, rail vehicles equipped with internal combustion engines must be equipped with environmentally friendly high-efficiency combustion engines [47] and exhaust aftertreatment systems [1, 8]. These solutions focus mainly on the modernization of vehicles [34], the use of batteries [21], including the most cutting-edge ones, such as Na-Ion [44], and adding ultracapacitors [46] to rail vehicles, hybridization [2], the use of alternative fuels [37, 39] and using various types of fuel cells [10]. The driving style can also significantly affect the resulting exhaust emission indicators [1]. However, the significant age of the rolling stock operated nationally results in increased exhaust emissions, especially during shunting works where the engine operating conditions are transient and changing [15].

This reason was the driving force behind the development of new shunting solutions in which for this type of work requiring significant power output [41] values, agricultural tractors, adapted to moving along the tracks and powered by a smaller combustion engine, were used instead of the conventional solutions [28, 30]. The main advantage of such solutions comes from their affordability, where the tractor is several times cheaper to purchase and operate than an average shunting locomotive. The use of this type of vehicle drive, despite its much lower emissions compared to diesel locomotives, still exposes the environment to the effects of harmful exhaust compounds [11, 33], especially when the vehicles are operated in enclosed spaces, such as in construction halls where air circulation is limited. Hence people remaining in the vicinity of a running vehicle are exposed to the effects of toxic exhaust gas compounds [40].

There are solutions using hybrid [36] and electric [5, 32] agricultural tractors as well as tractors used in greenhouses [22] around the world. Projects aimed at electrification of the agriculture sector were implemented, including innovative ones, such as an electric tractor powered through cables [43]. There have also been concepts of tractors that would use alternative energy sources such as solar energy [48]. Vehicles of this type require many complex and innovative technical solutions, such as in case of the suspension system [12], the fuel supply system [13], the steering system [19], and energy management [23, 24, 35, 42]. Analyzes of the economic feasibility of implementing an electric drive system for Diesel tractors [16], traction tests [25] and battery behavior tests [7] are also carried out. Works related to the widespread use of tractors with alternative drive are at a very advanced stage, especially in China [4], where increasing productivity in agriculture remains possible thanks to automation, robotization and the breeding of new, more durable varieties of plants [20]. These solutions, however, make it impossible to adapt vehicles to run on rails due to design factors.

The paper [27] presents the design expectations and the conceptual model of a rail-road tractor with a diesel-electric drive, where design solutions for the rail undercarriage rollers drive and braking were presented, which at the same time also had to meet all the legal requirements [6].

The next stage of the assessment of project feasibility and compliance with the outlined design parameters involved analyzes and simulations of the selection of basic parameters, such as electric motor power, energy storage capacity and several other mechanical parameters of the drive system [31] and tractor braking.

2. Project description

The diesel-electric tractor was designed on the basis of rail-road diesel tractors designed in Łukasiewicz – IPS „TABOR” [3, 26, 29]. The main structural elements with
Analysis of the selection of chosen technical parameters of the powertrain system

which the tractor was additionally equipped, based on the calculations, were: electric motors, reduction gears, electromagnetic clutches, a battery set and an alternator [50] as a source of drive for the guide rollers of the rail running gear. The tractor concept has been shown in Fig. 1.

The basic mode of tractor operation is work in open terrain powered by the combustion engine. The tractor can be powered by an electric motor e.g. when rolling the towed rolling stock into and out of inspection halls and during maneuvers in enclosed spaces.

In the electric driving mode, the main source of drive torque are the guide rollers of the rail drive chassis, which are driven by electric motors installed on the rail axles at both guide rollers or by one motor driving both guide rollers. The entire weight of the tractor in such situation rests on the guide rollers. Tractor tires are raised so that they make no contact with the ground.

The assumed geometrical parameters of the drive system (diameter of the internal gear of the roller and the diameter of the motor gear) allow to obtain the maximum gear ratio \(i_{f1} = 8.6 \), with a diameter of the guide roller of 500 mm. A two-stage reduction gear with a planned gear ratio of \(i_{lp} = 49 \) was connected to each of the guide roller sets to enable the use of conventional electric motors, which are to operate under optimal parameters (rotational speed and load) [18]. This solution was also chosen as a method of eliminating high-power electric motors which are greater in size, weight, energy consumption and cost. When driving in electric mode during shunting work, the guide rollers rotate at a low speed that requires a significant amount of torque and results in low travel speeds. For this reason, failure to use the reduction gear would result in inefficient operation of the electric motors at low rotational speeds, which would translate into significant energy losses. It should also be remembered that driving on rails at higher speeds in combustion engine mode requires the use of guide rollers that are mechanically connected to electric motors. Higher cruising speed and the use of reduction gears would drive the electric motor shaft to significant rotational speed values, and thus would significantly load the electric motor bearings. Such a phenomenon can significantly increase the probability of motor failure. For this reason an electromagnetic clutch is to be included in the drive system, which is expected to increase its overall reliability.

Fig. 1. Tractor concept model based on Arion-610: (1) combustion engine cover, (2) the system of hydraulic pressure on the rollers to the track, (3) pneumatic system of the railway brake, (4) front pull-buffer mechanism, (5) rear pull-buffer mechanism, (6) front running gear with electric drive, (7) rear running gear with electric drive, (8) mounting frame for the air tanks, (9) pneumatic control panel, (10) front buffer beam, (11) front coupler, (12) rear coupling hook, (13) electrical installation, (14) compressor drive (hydraulic or electric), (15) steering wheel lock, (16) energy storage devices, (17) hydraulic accumulators of the front rollers, (18) hydraulic accumulators for rear rollers and compressors, (19) alternator driven from the PTO shaft, (20) compressor for railway brake
3. Analysis of the selection of drive system parameters

3.1. Electric motor dimensions

Variant I. The electric drive of the guide rollers shown in Fig. 2 consists of: an asynchronous electric motor (1) with low rotational speed, an electromagnetic clutch (2), an internal gear (3), a wheel (4) and bearings (5, 6). Each of the four guide rollers of the rail-road tractor consists of such a set of devices. The electric motor is additionally equipped with an electromagnetic parking disc brake, built inside, in the rear portion of the vehicle. The electric motor is connected to the internal gear installed in the guide roller wheel through an electromagnetic clutch. The electromagnetic clutch disengages the electric motor from the roller only when the roller is not used to drive the vehicle, i.e. it acts as a guide on the track (when the tractor operates using the diesel drive).

The guide roller in the diesel-electric tractor has an increased rolling diameter from φ400 mm to φ500 mm. This is in order to make enough room to install an internal gear (with a specific ratio), an electric motor (large dimensions) as well as due to an increased load on the guide roller. Due to their considerable size, the two electric motors driving two rollers on the same axis must be shifted to positioned at an angle of approx. 90° to each other.

Variant II. The guide roller electric drive shown in Fig. 3 has an inbuilt asynchronous electric motor with a higher nominal rpm value. The exploitation of higher drive speed increases the power requirement for the same torque. In this solution, it would be advisable to electrically limit the high rotational speed of the drive motor. Two motors driving two guide rollers on the same axis are compact enough to be mounted in the same plane.

Variant III. The guide roller electric drive (variant III) shown in Fig. 4 has a built-in MeMax 1718 – Sin/Cos, BLDC brushless permanent magnet synchronous electric motor. Such a solution of the electric drive, due to the small longitudinal dimensions of the motor, enables optimal use of parameters and makes it possible to mount two motors on one axis. Table 1 presents the parameters of three variants of electric motors that could be installed on a rail-road vehicle.

![Fig. 2. Electric drive of a guide roller with a 5kW motor and 720 rpm](image2)

![Fig. 3. Electric drive of a guide roller with a 5 kW motor and 1430 rpm](image3)

![Fig. 4. BLDC electric motor for drive of a guide roller with a 6 kW and 3200 rpm](image4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variant I</th>
<th>Variant II</th>
<th>Variant III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number [-]</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Power [kW]</td>
<td>5.5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Max motor speed [rpm]</td>
<td>720</td>
<td>1445</td>
<td>5500</td>
</tr>
<tr>
<td>Rated current [A]</td>
<td>15.3 (400 V)</td>
<td>15.3 (400 V)</td>
<td>125 (48 V)</td>
</tr>
<tr>
<td>Max. torque [Nm]</td>
<td>73</td>
<td>71.1</td>
<td>39</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>25.2</td>
<td>33</td>
<td>14.3</td>
</tr>
<tr>
<td>M coefficient (M_max/M_nom) [-]</td>
<td>2.9</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>84</td>
<td>35</td>
<td>13.8</td>
</tr>
</tbody>
</table>

The analysis of the motor dimensions (Fig. 2) shows that the installation of two motors on the rail axis in one plane is not possible due to the limited length of the rail axis. However, two motors can be installed at an angle of 90° relative to each other. Such a solution was rejected due to the lack of symmetry of the electric motor installation, although technically such a solution is possible in the project implementation.

Figure 3 shows the mounting of a 5 kW motor with a speed of 1430 rpm. A motor with smaller dimensions compared to variant I meets the size conditions, but due to its considerable weight and larger longitudinal dimensions compared to variant III, it would not be optimally used in such a configuration.

The mounting conditions and assumed operating parameters of the tractor are met by the BLDC motor with a nominal power of 6 kW, which was shown in Fig. 4. This solution of the vehicle guide roller drive enables the optimal use of the motor operating parameters and the optimal fit of the two motors on one rail axis. Significant advantages of the motor used are its small longitudinal dimensions and low weight, while maintaining favorable traction parameters.

3.2. Vehicle drive technical parameters

The elements of the electric drive module for the diesel rail-road vehicle were selected based on the following calculations and assumptions under which the vehicle was to
operate. The main assumption was the prerequisites for starting (Table 2).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration – a</td>
<td>0.05</td>
<td>[m/s²]</td>
</tr>
<tr>
<td>Startup time – t</td>
<td>3</td>
<td>[s]</td>
</tr>
<tr>
<td>Wheel diameter</td>
<td>0.5</td>
<td>[m]</td>
</tr>
<tr>
<td>1st stage gear ratio – i₁</td>
<td>8.6</td>
<td>[-]</td>
</tr>
<tr>
<td>2nd stage gear ratio – i₂</td>
<td>215</td>
<td>[-]</td>
</tr>
</tbody>
</table>

Then the initial speed of the vehicle would equal:

\[V = a \cdot t = 0.05 \cdot 3 = 0.15 \text{ m/s} = 0.54 \text{ km/h} \]

(1)

and the rotational speed \(n_0 \) of the guiding roller would be:

\[n_0 = \frac{60 \cdot V}{\Pi \cdot D_k} = \frac{60 \cdot 0.15}{3.14 \cdot 0.5} = 5.7 \text{ rpm} \]

(2)

the electric motor rotational speed \(n_e \):

\[n_e = n_h \cdot i_c = 5.7 \cdot 215 = 1232 \text{ rpm} \]

(3)

The following assumptions were made for further calculations:

- mass of 4 empty wagons: \(m_p = 4 \cdot 30 = 120 \text{ Mg} \)
- mass of the diesel-electric tractor: \(m_c = 10.5 \text{ Mg} \).

The force of inertia of the towed rail set \(P_h \) at the moment when movement begins becomes:

\[P_h = (m_p + m_c) \cdot a = (120 + 10.5) \cdot 0.05 = 6.525 \text{ Mg} = 6525 \text{ N} \]

(4)

Thus, for a single wheel:

\[P_{hi} = 6525 : 4 = 1631 \text{ N} \]

(5)

Guide roller wheel driving torque \(M_{ak} \):

\[M_{ak} = \frac{P_i \cdot D_k}{2} = \frac{631 \cdot 0.5}{2} = 408 \text{ Nm} \]

(6)

Electric motor torque [50]:

\[M_{es} = \frac{M_{ak}}{i_c} = \frac{408}{215} = 1.9 \text{ Nm} \]

(7)

Maximum power demand of the electric motor \(N_{S_{max}} \):

\[N_{S_{max}} = \frac{M_{es} \cdot n_{es}}{9550} \]

(8)

where: \(n_{es} = 5500 \text{ rpm} – \text{ max electric motor rotational speed}, \) \(n_e = 1232 \text{ rpm} – \text{ electric motor speed when beginning to move.} \)

Hence:

\[N_{S_{max}} = \frac{M_{es} \cdot n_{es}}{9550} = \frac{1.9 \cdot 5500}{9550} = 1.09 \text{ kW} \]

(9)

The electric motor has a significant power demand (max. 12 kW for this motor type) at maximum rotational speeds, so the vehicle should be started at a lower motor speed, regulated with the BLDC motor by changing the voltage supplied [17].

Then:

\[N_S = \frac{M_{es} \cdot n_{es}}{9550} = \frac{1.9 \cdot 1231.9}{9550} = 0.245 \text{ kW} \]

(10)

The rotational speed of the electric motor while starting the vehicle should amount to \(n_i = 1200 \text{ rpm} \). Starting and braking with the vehicle while under loaded should take place at speeds not exceeding \(V_i \approx 0.5 \text{ km/h} \), i.e. up to the rotational speed of electric motors \(n_i \approx 1150 \text{ rpm} \). While driving, the rotational speed of the motors should be changed electrically depending on what is necessary, up to the value of \(n_{max} \approx 5500 \text{ rpm} \), thus obtaining the vehicle maximum cruising speed of: \(V_{max} \approx 2.5 \text{ km/h} \).

3.3. The gear transmission selection

Earlier, in the calculations of the torque values, the gear ratio \(i_z = 8.6 \) was assumed as the result of mounting the electric motors on the axle inside the rail wheel assembly. The smallest wheel diameter was chosen based on the limited number of teeth resulting from undercutting the contour during the cooperation of the wheels. \(z_1 = z_2 = 17 \text{ teeth} \) for the values \(a_0 = 20° \) and \(y = 1 \) as well as the number of teeth \(z_2 \):

\[z_2 = z_1 \cdot i_z = 17 \cdot 8.6 = 146 \]

(11)

Gear teeth module \(m_0 \):

\[m_0 = 2.71 \cdot \sqrt[3]{\frac{M_{go}}{\psi \cdot \lambda \cdot z \cdot k_{go}}} \text{ mm} = \]

(12)

\[= 2.71 \cdot \sqrt[3]{\frac{47400}{13 \cdot 3.26 \cdot 17 \cdot 40}} \]

\[= 2.71 \cdot 1.18 = 1.5 \text{ mm} \]

where: precise execution with one-sided bearing (wheel sagging):

\[\psi_{max} = \frac{b_s}{m_0} = \frac{40}{3} \approx 13 \]

(13)

- for the wheel with a zero contour displacement \(\lambda = 3.26, \)
- for 10⁷ load cycles:

\[k_{go} = 0.38 \cdot R_m \cdot C_c = 0.38 \cdot 550 \cdot 2 = \]

\[= 420 \text{ MN/m}^2 = 42 \text{ N/mm}^2 \]

(14)

\[C_c = 2 \] and when the wheel is made of steel casting \((R_m = 550 \text{ Mm/m}^2), M_0 = 47.4 \text{ Nm} = 47400 \text{ Nmm}. \)

The gear teeth modulus \(m_0 = 3 \text{ mm} \) was used, assuming better material for the wheels and improving the mounting of the small wheel (introducing bearings). Also greater loads are foreseen for the toothed wheel.

The diameters of the gears \(D_1 \) and \(D_2 \) are:

\[D_1 = z_1 \cdot m_0 = 17 \cdot 3 = 51 \text{ mm} \]

(15)

\[D_2 = z_2 \cdot m_0 = 146 \cdot 3 = 438 \text{ mm} \]

(16)

3.4. Electromagnetic clutch selection

The fundamental parameter used to guide the selection of the electromagnetic clutch is the torque on the shaft between the two-stage gearbox and the internal gear, which equals \(M_{em} = 47.4 \text{ Nm} \). Hence, the EZM1-80-5-24 type
clutch was chosen with technical parameters as presented in Table 3. The nominal torque of the clutch is many times greater than the torque transmitted by the electric motor.

Table 3. Technical parameters of the selected electromagnetic clutch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch size</td>
<td>80</td>
<td>[-]</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>1000</td>
<td>[Nm]</td>
</tr>
<tr>
<td>Coil power</td>
<td>40</td>
<td>[W]</td>
</tr>
<tr>
<td>Max motor speed</td>
<td>2500</td>
<td>[rpm]</td>
</tr>
<tr>
<td>Operation</td>
<td>dry</td>
<td>[-]</td>
</tr>
</tbody>
</table>

4. Checking the guide roller bearings

The following sizes of SKF tapered roller bearings are used in existing track rollers on rail-road tractors:
- no. 33019 dimensions \(\phi 95/145 \times 39 \) and a load capacity of \(C = 15000 \) daN
- no. 33018 dimensions \(\phi 90/140 \times 39 \) and a load capacity of \(C = 14300 \) daN.

The equivalent force \(P_2 \) acting on the bearings is calculated as follows:

\[
P_2 = X F_r + Y F_s = 1 \cdot 3000 + 0 \cdot 262.5 = 3000 \text{ daN} \quad (17)
\]

where: maximum radial force \(F_r \) acting on the roller wheel with the tractor lifted; \(F_s = 30 \text{kN} = 3000 \text{ daN} \), longitudinal force on the wheel \(F_s \):

\[
F_s = F_{1\text{gum}} = 3000 \cdot \tan 50 = 262.5 \text{ daN} \quad (18)
\]

The following indicators were taken from the bearing catalog:

\[
e = \frac{F_r}{F_s} = \frac{262.5}{3000} = 0.087 \quad (19)
\]

for \(e < 0.27 \) and \(F_a/C = 0.0175 \) these values are \(X = 1, Y = 0 \).

The bearings dynamic load capacity \(C_{\text{calc}} \) was verified using the following formula:

\[
C_{\text{calc}} = f_h \cdot P_r \cdot \frac{1}{f_1} \text{ daN} \quad (20)
\]

where: temperature factor: \(f_1 = 0.9 \) for \(t > 200^\circ \text{C} \), operating time: \(t_0 = 10000 \text{ h} \), bearings rotational speed: \(n_{\text{min}} = 5.7 \text{ rpm} \) and \(n_{\text{max}} = 220 \text{ rpm} \).

Hence the operating time factor is:

\[
f_h = \frac{L}{500} \cdot \frac{10000}{500} = \frac{3.3}{20} = 2.459 \quad (21)
\]

And the rotational speed factor \(f_1 \) is [14]:

\[
f_{n_{\text{min}}} = \frac{33.3}{n_{\text{min}}} = \frac{33.3}{5.7} = \frac{33}{5} = 6.984 \quad (22)
\]

\[
f_{n_{\text{max}}} = \frac{33.3}{n_{\text{max}}} = \frac{33.3}{220} = \frac{33}{220} \approx 0.1514 \quad (23)
\]

Hence the calculated dynamic load capacities of the bearings are:

\[
C_{\text{calc}_{\text{min}}} = \frac{2.459 \cdot 3000}{1.699 \cdot 0.9} = 4824 \text{ daN} \quad (24)
\]

\[
C_{\text{calc}_{\text{max}}} = \frac{2.459 \cdot 3000}{0.567 \cdot 0.9} = 14448.3 \text{ daN} \quad (25)
\]

and the total dynamic load capacity of the bearings becomes:

\[
\Sigma C = 15000 + 14300 = 29300 \text{ daN} > C_{\text{calc}}. \quad (26)
\]

5. Air brake selection for the rail drive

The block brake is installed in the outer cavity of the guide roller (Fig. 5) for the four guide rollers of the rail undercarriage. The friction brake is designed to brake only the weight of the tractor itself. Braking of a tractor with wagons train set is performed with the use of a pneumatic railway brake supplied with air from a compressor installed in the rear part of the tractor.

Two AEVUZ-50/15-P-A type pneumatic actuators with the following parameters listed in Table 4 were used to control the two brake pads.

Table 4. Parameters of the selected pneumatic actuators of brake blocks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston diameter – (D)</td>
<td>50</td>
<td>[mm]</td>
</tr>
<tr>
<td>Piston rod diameter – (d)</td>
<td>16</td>
<td>[mm]</td>
</tr>
<tr>
<td>Cylinder stroke – (s)</td>
<td>15</td>
<td>[mm]</td>
</tr>
<tr>
<td>Max. allowed pressure – (P_a)</td>
<td>10</td>
<td>[bar]</td>
</tr>
<tr>
<td>Spring force – (P_s)</td>
<td>40</td>
<td>[N]</td>
</tr>
<tr>
<td>Force at 6 bar – (P_6)</td>
<td>1178</td>
<td>[N]</td>
</tr>
</tbody>
</table>

The pressure of the brake block against the rail wheel is applied by means of a lifting system and by the pneumatic supply of the actuator (from the piston rod side). The block is moved away from the wheel by the action of a spring mounted on the piston side in the actuator. When connecting the actuators directly to the compressor, the supplied pressure becomes \(p = 10 \text{ bar} \), when connected to air tanks, the supplied pressure becomes \(p = 8 \text{ bar} \).

The cross-section area \(A_i \) of the bearing surface on the piston rod side is:

\[
A_i = \frac{\Pi \cdot (D^2 - d^2)}{4} = \frac{\Pi \cdot (50^2 - 16^2)}{4} = 1761.5 \text{ mm}^2 \quad (27)
\]

Hence the force on the piston rod \(P_r \) becomes:

\[
P_r = p \cdot A_i - P_s [N] \quad (28)
\]

- for \(p = 10 \text{ bar} \):

\[
P_r = 1 \cdot 1761.5 - 40 = 1721.5 \text{ N} \quad (29)
\]

- for \(p = 8 \text{ bar} \):

\[
P_r = 0.8 \cdot 1761.5 - 40 = 1369.2 \text{ N} \quad (30)
\]

The gear ratio of the levers pressing the brake pad to the wheel according to the dimensions given in Fig. 5 is:

\[
i_d = \frac{103 \text{ mm}}{49 \text{ mm}} = 2.1 \quad (31)
\]

Hence, the force pressing the block against the surface of the wheel is:

\[
P_k = \frac{P_r}{i_d} \quad (32)
\]
The braking torque M_b was determined for the friction conditions defined as: a cast iron block on a cast steel wheel, taking into account surface contamination, so with a sliding friction coefficient of $\mu = 0.65$ and the friction diameter (inner surface of the wheel) $D_i = 0.44$ m.

$$M_b = P_k \cdot \mu \cdot \frac{D_i}{2}$$ \hspace{1cm} (35)

- for $p = 10$ bar:

$$P_k = \frac{1721.5}{2.1} = 820 \text{ N}$$ \hspace{1cm} (33)

- for $p = 8$ bar:

$$P_k = \frac{1369.2}{2.1} = 652 \text{ N}$$ \hspace{1cm} (34)

- for $p = 10$ bar:

$$M_b = 820 \cdot 0.65 \cdot \frac{0.44}{2} \approx 120 \text{ Nm}$$ \hspace{1cm} (36)

$$M_b = 625 \cdot 0.65 \cdot \frac{0.44}{2} \approx 90 \text{ Nm}$$ \hspace{1cm} (37)

Standard parking braking torque values in systems with hydraulic and electric motors performed using mechanical parking brakes are $M_b = 120 \text{ Nm}$.

Conclusion

This article presents the initial concept of a road-rail vehicle. Due to the increasingly restrictive norms regarding the exhaust emission of harmful substances, it became common to seek environmentally friendly solutions that still allow for maintaining the required operating and technical parameters. The authors presented a construction design that allows for, among others, emission-free driving indoors with the use of an electric drive system. In addition, the vehicle, compared to a shunting locomotive fulfilling the same functions, was characterized by a lower purchase cost, which is expected to make such a product more attractive to potential customers.

The article includes a multi-variant analysis of the drive system selection, which took into account the selection of appropriate dimensions of the electric motor, as well as the technical parameters of the drive, gear ratio and clutch. Calculations were also done for the bearings of the guide rollers and the pneumatic brake system.

Road-rail vehicles combine the advantages of rail and road vehicles. Equipped with a diesel-electric drive system, they have additional features that are a significant advantage in the competitive market.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>acceleration [m/s2]</td>
</tr>
<tr>
<td>BLDC</td>
<td>brush less direct-current motor</td>
</tr>
<tr>
<td>C</td>
<td>load capacity [N]</td>
</tr>
<tr>
<td>C_{calc}</td>
<td>calculated dynamic load capacity [N]</td>
</tr>
<tr>
<td>D_k</td>
<td>guide roller wheel diameter [m]</td>
</tr>
<tr>
<td>F</td>
<td>force [N]</td>
</tr>
<tr>
<td>i</td>
<td>gear ratio [-]</td>
</tr>
<tr>
<td>i_e</td>
<td>total gear ratio [-]</td>
</tr>
<tr>
<td>k_{sp}</td>
<td>maximum stress [MPa]</td>
</tr>
<tr>
<td>M</td>
<td>torque [Nm]</td>
</tr>
<tr>
<td>n</td>
<td>rotational speed [rpm]</td>
</tr>
<tr>
<td>N_h</td>
<td>power demand [kW]</td>
</tr>
<tr>
<td>p</td>
<td>pressure [bar]</td>
</tr>
<tr>
<td>P_e</td>
<td>equivalent force [N]</td>
</tr>
<tr>
<td>R_m</td>
<td>ultimate tensile strength [MPa]</td>
</tr>
<tr>
<td>s</td>
<td>stroke [mm]</td>
</tr>
<tr>
<td>V</td>
<td>velocity [m/s]</td>
</tr>
<tr>
<td>z</td>
<td>number of teeth [-]</td>
</tr>
<tr>
<td>λ</td>
<td>gear width factor [-]</td>
</tr>
</tbody>
</table>

Bibliography

[6] CHEN, Y., XIE, B., DU, Y. et al. Powertrain parameter matching and optimal design of dual-motor driven electric...

[38] NGUYEN, T., PHAM, M.H., LE ANH, T. Spray, combustion, performance and emission characteristics of a common

Pawel Daszkiewicz, DEng. – Lukasiewicz Research Network – Rail Vehicle Institute "TABOR", Poland. e-mail: p.daszkiewicz@tabor.com.pl

Maciej Andrzejewski, DEng. – Lukasiewicz Research Network – Rail Vehicle Institute "TABOR", Poland. e-mail: maciej.andrzejewski@tabor.lukasiewicz.gov.pl

Patryk Urbański, MEng. – Lukasiewicz Research Network – Rail Vehicle Institute "TABOR", Poland. e-mail: patryk.urbanski@tabor.com.pl

Natalia Stefanska, MEng. – Lukasiewicz Research Network – Rail Vehicle Institute "TABOR", Poland. e-mail: natalia.stefanska@tabor.lukasiewicz.gov.pl