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Modeling the fuel consumption by a HEV vehicle – a case study 
 
ARTICLE INFO  The article presents a mathematical model demonstrating the synergy of HEV energetic machines in ac-

cordance with the model predictive control. Then the results of road tests are presented. They were based on the 

factory control of the above-mentioned system. The results of the operating parameters of the system according 

to the factory control and the results of the operating parameters according to the model predictive control were 
compared. On their basis, it could be concluded that the model predictive control contributed to changes in the 

power and electrochemical charge level of the energy storage system from 50.1% (the beginning) to 56.1% (the 
end of course) and for MPC from 50.1% (the beginning) to 59.9% (the end of the course). The applied MPC with 

13 reference trajectories (LQT) of power machines of the series-parallel HEV allowed for fuel savings on the 

level of 4%.  
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1. Introduction  
The fuel consumption of HEVs is an important parame-

ter depending on the method of controlling the internal 

combustion engine, generator and the electric motor. The 

main purpose of this control is to increase the energy effi-

ciency of the HEV drive system. This control can be de-

fined as the cooperation of assemblies/components remain-

ing in continuous interaction with each other. This can also 

be considered as energetic machines energy management 

system [3, 10, 24]. 

The origins of HEV energy management systems are 

seen in a control method based on heuristic hypotheses. 

They assumed the expected operating conditions of the 

drive system – commencement of operation and its contin-

uation in electrical mode to the set speed or reaching the 

maximum torque. Within the range that the torque of the 

electric motor decreased, the drive was supported by an 

internal combustion engine [14, 17]. 

Another solution of the energy management system was 

the use of statistical optimisation. This method did not 

require knowledge of the actual power demand, but was 

based only on taking into account its average value [3]. 

The low accuracy of the mentioned method resulted in 

the development of the HEV drive energy management 

system based on stochastic-dynamic programming (DP) [2, 

10, 18, 19, 36]. In the model of the hybrid powertrain ener-

gy management system, the power demand, determined by 

the driver, was of a stochastic process characteristics. In the 

concept, however, the model of a hybrid vehicle was de-

termined. The optimisation of the target function was based 

on the power demand in general road conditions and not on 

a specific driving cycle. This resulted in low accuracy of 

the method [19]. 

An interesting approach to the issue of energy manage-

ment of HEVs can be found in [24, 25]. They contain algo-

rithms of the equivalent fuel consumption strategy (ECMS), 

among others, in HEVs equipped with fuel cells.  

Such a control strategy presented as a function of cost 

(the sum of fuel consumption and energy consumption of  

a hybrid vehicle) also appears in [11, 30]. The main disad-

vantage of this type of control is the use of information  

a priori regarding road conditions or conditions for con-

ducting laboratory tests (according to the adopted driving 

cycle). 

Modification of fuel consumption optimisation algo-

rithms (ECMS) for series-parallel electric hybrid vehicles 

was undertaken by Liu and Peng [19]. The experimental 

tests carried out by them using the SDP and ECMS strate-

gies resulted in an improvement in the dynamic properties 

of HEV. They also contributed to the reduction of fuel 

consumption of the HEV. The energy model of the HEV 

vehicle powertrain system created by them automatically 

generated dynamic equations of the system. The demon-

strated algorithms implemented an effective synergy of the 

internal combustion engine with electric machines ensuring 

a reduction in fuel consumption [20]. 

Another solution assumed the use of PSO (particle 

swarm optimisation) [1, 6–8, 15, 31]. It was used in a hy-

brid vehicle enabling charging the traction battery from  

a power socket (plug-in HEV) [6, 30]. This energy man-

agement strategy was based on a real-time algorithm used 

to reduce fuel consumption. The result of Hwang and 

Chen's research was an improvement in fuel consumption 

to 9.4% compared to the base control model [15].  

In parallel, research was conducted on the model predic-

tive control in energy management in HEVs [16]. The con-

trol applied enabled optimal torque distribution for the 

parallel hybrid powertrain of the vehicle. The cost function 

used in the strategy was minimised thanks to telemetric 

estimation of vehicle speed [16]. 

Research was also carried out using model predictive con-

trol in parallel-series HEVs equipped with a supercapacitor [5]. 

Simultaneously, experiments were carried out with 

HEVs equipped with a series powertrain system. A strategy 
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to minimise fuel consumption was developed thanks to the 

use of stochastic optimisation of the management process  

using the Markov chain [23]. 

Model predictive control was also used to determine ex-

its from the system (economical driving reducing fuel con-

sumption) and also relied on information provided by the 

Intelligent Transport System [36]. 

This energy management system was developed in [34, 

35]. Linear square tracking (LQT) was applied to the model 

predictive control. It supported the effective control of 

power distribution in a series-parallel HEV. At the same 

time, the LQT controller minimised the cost function, main-

taining the level of charge of the energy storage system at 

the desired level [34, 35].  

Another method of exercising model predictive control 

in the energetic machines energy management model  

of a HEV was also invented. Non-linear predictive control 

(NMPC) has saved up to 8.8% of fuel consumption accord-

ing to the NEDC cycle. This result was obtained by com-

paring the values to the Factory Vehicle Energy Manage-

ment System [31]. 

The energy model of a series-parallel HEV is also pre-

sented in the article [6]. It was characterised by high accu-

racy; however, it was based on NEDC and HWYCOL road 

tests.  

It is also important to mention about the other actual ef-

fective energy management systems proposed in HEVs. It 

was based on distributed deep reinforcement learning 

(DRL). Paper presented DRL algorithms just like: a deep q-

network (DQN), asynchronous advantage actor-critic 

(A3C) and distributed proximal policy optimalization 

(DPPO). Simulation results show that tree DRL based con-

trol strategies can achieve near optimal fuel economy but 

also outstanding computational efficiency [32]. 

It is worth noting that above all presented energy man-

agement systems, the MPC is a proven and effective meth-

od used by many researchers [28, 34–36]. But the main 

problem of MPC is that it is useless to achieve a lower level 

of HEV fuel consumption without reference trajectory (in-

finite prediction horizon). So, as it was mentioned, LQT 

with MPC can reduce fuel consumption [34, 35]. But it was 

proven only for maximum load of ICE. It was only one 

reference trajectory. An important aspect is how to reach 

the lower level of HEV fuel consumption? Maybe the use 

of dozen reference trajectories, not only for maximum pow-

er but also for partial loads of ICE, would solve this prob-

lem? To reach this, it is required to collect operational 

points of ICE under real conditions. Only a few works were 

carried out in road conditions, e.g. [4, 27–29] not based on 

simulations or observations and measurements in stationary 

(laboratory) conditions [15, 30, 32–35].  

In real life operation, it is possible to get more necessary 

information useful to optimise the HEV energy manage-

ment control. This translates into its mileage of fuel con-

sumption.  

The vast majority of the publications cited outline the 

study of the mileage fuel consumption of the HEV in sta-

tionary conditions. The experiments are then carried out on 

the basis of specific road tests (often poorly reflecting the 

actual road conditions). However, there is no information 

on changes in the mileage fuel economy of the HEV in 

actual road operation using the model predictive control 

mode. Hence, it seemed necessary to carry out tests of the 

mileage fuel consumption value of the HEV vehicle with 

the model predictive control. For this purpose, a diagnostic 

computer for a specific car model was used. Such research 

is a novelty in this field. The above observations became 

the basis for formulating the main purpose of the work.  

2. Purpose and scope of research 
The aim of the study was to assess the fuel consumption 

of HEV with model predictive control in real road condi-

tions (case study).  

Raising this issue was due to the insufficient level of 

knowledge about the impact of the change in the energetic 

machines management control in the HEV concerned on its 

fuel consumption (in real road conditions). The additional 

purpose of the research was to verify the energetic ma-

chines operating parameters of the series-parallel HEV 

powertrain system.  

The basic study questions were as follows: 1) does MPC 

strategy with 13 reference trajectories really contribute to 

improving the fuel economy of a HEV? 2) does this EMS 

have an good effect on the battery state of charge (SOC)?  

The aim of the work is considered to be achieved when 

the answers to the research questions are obtained. The 

values of operational parameters during real vehicle traffic 

conditions should be taken as the basic evaluation criterion. 

Within the framework of the defined objective of the work 

the following specific objectives were implemented: ‒ 

determination of percentage differences in the course of 

fuel consumption according to MPC with 13 reference 

trajectories (LQT) and factory control, ‒ comparison of the 

obtained values with the values provided by the vehicle 

manufacturer. Experimental assessment of HEV fuel con-

sumption in real road conditions as the main scientific goal 

will allow to prove the rightness and to indicate the benefits 

of the MPC with 13 reference trajectories application of the 

HEV working machines. 

The scope of research will be based on the experimental 

method. It will include tests of the fuel consumption of the 

HEV with factory control in real road conditions. Then, the 

values of the parameters of the internal combustion engine and 

electrical machines will be simulated. This will be implement-

ed in accordance with the energy management strategy for 

model predictive control – also in real road conditions. 

The studies will be carried out in urban and extra-urban 

traffic conditions with the use of a specific HEV vehicle. 

They will be carried out in accordance with the presented 

HEV energy consumption model. 

The subject of the studies will be a Toyota Prius 3 car 

(produced in 2012), a HEV equipped with a series-parallel 

hybrid powertrain system. 

The technical and operational characteristics of the test 

object are presented in Table 1 [13, 19]. 

3. HEV energy consumption model 
In order to determine the value of the mileage fuel con-

sumption of the HEV according to the predictive control, it 

was necessary to determine the type of parameters related 

to the cost function. These included: 
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a) power of the internal combustion engine,  

b) angular speed of the internal combustion engine, 

c) power of the generator,  

d) angular speed of the generator, 

e) power of the electric motor,  

f) the angular speed of the electric motor, 

g) power of the traction battery,  

h) the level of charge of the traction battery.  

The indicated parameters are related to the power 

transmission in the powertrain system of the HEV. 

 
Table 1. Specifications of Toyota Prius 3 2012 vehicle [13]  

Parameter Unit Value 

Total mass kg 1630 

Wheel dynamic radius m 0.29 

Wheels moment of inertia kg m2 2.7 

Facing Surface m2 1.62 

Rolling resistance coeffi-

cient 

– 0.0084 

Air drag coefficient – 0.25 

Drive system type – Series and parallel 

Internal combustion engine 

Ignition type  spark ignition 

Capacity dm3 1.8  

Number of cylinders  4 

Max. power  kW 73  

Max. power rotational 

speed  

rpm 5200  

Max. torque  Nm 142  

Max. torque rotational 

speed  

rpm 4000  

Mass moment of inertia kg m2 0.18  

Generator (MG1) 

Type – three-phase synchronous 
AC 

Function  – generator, ICE starter 

Rated voltage  V 650 

Maximum output power  kW  42 

Max torque Nm 45 

Current at max torque A 75 

Max. rotational speed  rpm  10,000 

Mass moment of inertia kg m2 0.023 

Electric motor (MG2) 

Type  three-phase synchronous AC 

Function   generator, wheel drive 

Rated voltage V 650 

Maximum output power  kW  60 

Maximum torque Nm  207 

Current at max torque  A 230 

Max. rotational speed rpm  13000 

Mass moment of inertia kg m2 0.05 

Electrochemical accumulation system and inverter 

Battery type  NiMH 

Nom. voltage  V 201.6 

Capacity Ah 6.5 

3.1. Power transmission in the powertrain system  

The power generated by the internal combustion engine 

is transferred to the yoke of the satellite wheels. Then it is 

directed onto the planetary gear crown wheel. After exiting 

the planetary gearbox, the power drives the axles of the 

vehicle's wheels using the counter drive gear and the final 

drive gear. The MG1 generator, connected to the sun gear, 

acts as a starter and is used to charge the battery while driv-

ing. The MG2 electric machine is connected to the sun gear 

of the second planetary gear. It is designed to support the 

internal combustion engine in generating power, but also to 

ensure energy recovery during braking [22] (Fig. 1). 

 

 

a) first planetary gear (ICE side) 

 

b) second planetary gear (MG2 side) 

Fig. 1. Power transfer dynamics in the series-parallel powertrain system of 
the HEV 

 

The operation of the above system is described by the 

following angular speed relationships [22]: 

ωC1 =
R1

S1 + R1
ωR +

S1
S1 + R1

ωS1 (1) 

ωC2 =
R2

S2 + R2
ωR +

S2
S2 + R2

ωS2 (2) 

The yoke of the second gear's satellites is blocked, 

therefore ωC2 = 0. 

0 =
R2

S2 + R2
ωR +

S2
S2 + R2

ωS2 (3) 
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a) second planetary gear (MG2 side) 

Fig. 1. Power transfer dynamics in the series-parallel powertrain system of the 

HEV 
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R2
S2 + R2

ωR = −
S2

S2 + R2
ωS2 (4) 

ωR = −
S2
R2
ωS2 (5) 

ωS2 = ωM, ωC1 = ωE, ωS1 = ωG (6) 

ωR = −
S2
R2
ωM (7) 

ωE =
R1

S1 + R1
ωR +

S1
S1 + R1

ωG (8) 

ωE = −
R1

S1 + R1
⋅
S2
R2
ωM +

S1
S1 + R1

ωG (9) 

ωM = −
R2
S2
ωR (10) 

ωG =
ωE(R1 + S1)

S1
+
R1
S1

S2
R2
⋅ ωM (11) 

As it can be seen from the above relationships, the an-

gular speeds of individual HEV energy machines are close-

ly related.  

The angular speed at the output of the gearbox results 

from the angular speeds of individual energetic machines. 

The vehicle speed is described by the following relationship 

[35]: 

v =
ωR ⋅ rd
iFD

 (12) 

Limitations of power transmission in the powertrain 

system: 

a) power of the internal combustion engine: 

0 ≤ PE ≤ PE
max (13) 

b) angular speed of the internal combustion engine: 

ωE
min ≤ ωE ≤ ωE

max (14) 

c) power of the generator (MG1):  

PG
min ≤ PG ≤ PG

max    (15) 

d) angular speed of the generator (MG1): 

ωG
min ≤ ωG ≤ ωG

max  (16) 

(e) power of the electric motor (MG2): 

PM
min ≤ PM ≤ PM

max    (17) 

 

(f) rotational speed of the electric motor (MG2): 

ωM
min ≤ ωM ≤ ωM

max (18) 

The propulsion system of the HEV is characterised by 

different relationships when the vehicle is in the steady 

conditions or unsteady conditions. 

3.2. Movement of the HEV under steady state conditions 

During the steady movement of the vehicle, there is no 

resistance to inertia forces, hence the mass moments of 

inertia of individual energetic machines are not taken into 

account. Then the operation of the powertrain system (Fig. 

1) describe the following equations [26, 32]: 

PE ∙ ηC1/R ∙ ω𝐸
−1 = F1(R1 + S1) (19) 

PG ∙ ηS1/C1 ∙ ωG
−1 = − F1S1 (20) 

PM ∙ ηR2/R ∙ ωM
−1 = F2S2  (21) 

It can also be noted that the output power of the system 

depends on the power of individual power machines:  

PE ∙ ηC1/R + PM ∙ ηR2/R = PR  (22) 

Hence, the power acting on the wheels of the vehicle, 

taking into account the output power of the system and the 

efficiency of the main transmission, takes the form of: 

PW = PR ∙ ηfd = (PE ∙ ηC1/R + PM ∙ ηR2/R) ∙ ηfd (23) 

The movement of the HEV under steady state condi-

tions is characterised by a constant speed. In such condi-

tions, when driving on a smooth, straight road (without 

bends), the HEV overcomes rolling resistance, air re-

sistance, or hill resistance. Then, the relation of the HEV 

movement, expressed by the power acting on the wheels, is 

as follows: 

Pw = Fp ∙ v (24) 

Pw = Presis (25) 

Pw = Fresis ∙ v = (Fr + F𝑠 + F𝑎) ∙ v (26) 

Pw = (mgfr cos α +mg sin α +
1

2
ρA ⋅ CdAfv

2) ∙ v (27) 

3.3. Vehicle movement under unsteady (transient) state 

conditions 

During the transient movement of the vehicle there are 

inertia resistances, hence in this case the mass moments of 

inertia of individual energetic machines are taken into ac-

count. This is described in the following equations [28, 34]: 

JE ⋅ ωE
•
= PE ∙ ηC1/RωE

−1 − F1(R1 + S1) (28) 

JG ⋅ ωG
•
= PG ∙ ηS1/C1 ∙ ωG

−1 + F1S1 (29) 

JM ⋅ ωM
•
= PM ∙ ηR2/R ∙ ωM

−1 − F2S2  (30) 

JR ⋅ ωR
•
= F1R1 + F2R2 − PRωR

−1

=
R1

R1 + S1
PE ∙ ηC1/RωE

−1 +
R2
S2
⋅ PM

∙ ηR2/R ∙ ωM
−1 − PRωR

−1 

(31) 

The movement of the HEV in transient conditions is 

characterised by variable speed. In such conditions, when 
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driving on a smooth, straight road (without bends), the 

HEV overcomes rolling resistance, air resistance, inertia 

resistance, or potentially hill resistance. Then the relation of 

the movement of the HEV, expressed through the power on 

the wheels, takes the form of: 

Pw = ∫ Fresisdv
𝑣2

𝑣1

= ∫ (Fr + F𝑠 + F𝑖 + F𝑎)dv
𝑣2

𝑣1

 (32) 

Pw = ∫ (mgfr cos α + mg sin α + δ ∙ m ∙ a +
1

2
ρA

𝑣2

𝑣1

⋅ CdAfv
2)dv 

(33) 

When overcoming inertia resistance by the vehicle, an 

important parameter is the rotating mass coefficient. Taking 

into account the mass moments of inertia of energetic ma-

chines, it takes the following form: 

δ = w1 +w2 ∙ iG
2 + w3 ∙ iE

2 + w4 ∙ iM
2  (34) 

w1 = 1 +
g

G
∙
Jk

rd
2 (35) 

w2 =
g

G
∙
JG ∙ ηfd ∙ ifd

2

rd
2  (36) 

w3 =
g

G
∙
JE ∙ ηfd ∙ ifd

2

rd
2  (37) 

w4 =
g

G
∙
JM ∙ ηfd ∙ ifd

2

rd
2  (38) 

Using relations from (28) to (31) with the assumptions 

of the model (JR ≈ 0), a simplified version of the predictive 

control model is presented below: 

 
[JE + JG (

R1+S1

S1
)
2

] ⋅ ω
•

E − [JG
R1⋅S2⋅(R1+S1)

R2⋅S1
2 ] ⋅ ω

•

M = PE ∙

ηC1/R ∙ ωE
−1 + PG ⋅

(R1+S1)

S1
 ∙ ηS1/C1 ∙ ωG

−1  
(39) 

[JE ⋅
R1

R1 + S1
]ω
•

E + [JM
R2
S2
−m ⋅ (

rd
fd
)
2

⋅
S2
R2
] ⋅ ω

•

M 

= PE ⋅
R1

R1 + S1
ηC1
R

∙ ωE
−1 + PM ⋅

R2
S2
ηR2
R

 

∙ ωM
−1 +

Tbrk ∙ ηfd
fd

+
1

2
⋅ ρA ⋅ Cd ⋅ Af 

⋅
S2
2 ⋅ ωM

2 ⋅ rd
3

R2
2 ⋅ fd

3
−mg ⋅

rd
fd
(fr cos α + sin α) 

(40) 

3.4. Operation of the electrochemical energy storage 

system 

The full electric hybrid powertrain system of the vehicle 

assumes the efficient use of an electric power source. The 

status of available electricity is reflected in the battery 

charge level (SOC) [12, 20, 34, 35]:   

SOC =
Qmax − Qused

Qmax
∙ 100% (41) 

The used electrical capacity of the battery is described 

by the following relation: 

Qused =

{
 
 

 
 ∫ Ibat ⋅ dt

t

0

∫ Ibatηcoulombdt
t

0

 (42) 

Please note that Ibat > 0 (discharging), Ibat < 0 (charging). 

Hence, the derivative of the electrochemical charge level of 

the energy storage system can be presented as follows: 

SOC
•

= −
Ibat
Qmax

 (43) 

Power of the electrochemical energy storage system:  

Pbat = Ubus ⋅ Ibat = (Voc − Ibat ⋅ rbat) ⋅ Ibat
= VocIbat − Ibat

2 ⋅ rbat 
(44) 

Ultimately, the charging or discharging current of the 

battery takes the following form: 

SOC
•

= −
VOC − √VOC

2 − 4rbatPbat
2rbatQmax

 (45) 

The power of the energy storage system Pbat is used dur-

ing all driving modes. Both during the drive or recuperation 

process. To cover the power demand generated by the gen-

erator and/or the electric motor according to the following 

relation: 

Pbat = PG ∙ ηG
k ∙ ηC1

k + PM ∙ ηM
k ∙ ηC2

k = Pdes − PE (46) 

Pdes is the power expected through pressing the acceler-

ator or brake pedal. The power of the energy storage system 

shall be either a positive value during discharge or a nega-

tive value during charging. 

3.5. Restrictions to the energy storage system  

The applied energy management strategy – the predic-

tive control is characterised by specific limitations of the 

energy storage system: 

a) traction battery power: 

Pbat
min ≤ Pbat ≤ Pbat

max  (47) 

(b) the level of charge of the traction battery: 

SOCmin ≤ SOC ≤ SOCmax  (48) 

The mathematical model has been linearised to the spe-

cific conditions. The linear form of the MPC model is rep-

resented by the matrices: 

[

E11 −E12

E21 E22 − ρA ⋅ Cd ⋅ Af ⋅
S2
2 ⋅ rd

3

R2
2 ⋅ fd

3

] ⋅ [
ωE
•

ωM
• ]

=

[
 
 
 ηC1/R ∙ ωE

−1
R1

R1 + S1
∙ ηS1/C1 0

R1
R1 + S1

ηC1/R 0
R2
S2
ηR2/R]

 
 
 

[

PE ∙ ωE
−1

PG ∙ ωG
−1

PM ∙ ω𝑀
−1

] 
(49) 

where: 

E11 = JE + JG (
R1+S1

S1
)
2

,  E12 = [JG
R1⋅S2⋅(R1+S1)

R2⋅S1
2 ],   

E21 = [JE ⋅
R1

R1+S1
],  E22 = [JM

R2

S2
−m ⋅ (

rd

fd
)
2

⋅
S2

R2
] 

ED = E11(E22 − ρ ⋅ Cd ⋅ Af ⋅
S2
2 ⋅ rd

3

R2
2 ⋅ fd

) + E12 ⋅ E21

 

(50) 
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3.6. Mileage fuel consumption 

The mileage fuel consumption of the HEV is a result of 

several other parameters. Not only the fuel consumption of 

the internal combustion engine, but also the equivalent fuel 

consumption of the electric motor should be taken into 

account here. This is described in the following relations 

showing the relationships between the required power val-

ues of the internal combustion engine and the electric motor 

[28, 35]: 

b =
m
•

PE
 (51) 

m
•
= b ⋅ PE =

PEdes

ηE⋅Wu
  (52) 

The calorific value of the fuel (petrol) was equal to 

44 ∙  106 J/kg. The equivalent fuel consumption, calculated 

on the basis of the consumed energy of the traction battery, 

has been determined in accordance with the formula: 

meq

•
= Cbat ⋅ Pbat = Cbat ⋅ Voc ⋅ Ibat  (53) 

Ultimately, the equivalent fuel consumption takes the 

form of: 

meq

•
=

Cbat

2rbat
[Voc

2 − Voc ⋅ √Voc
2 − 4rbatPbat]  (54) 

The value of the equivalent fuel consumption coeffi-

cient Cbat was determined and equalled 0.0000227. The 

parameter was determined on the basis of the equivalent 

fuel consumption. As the power of the traction battery to 

the calorific value of the fuel coefficient. According to [11], 

the values of b1 and the coefficient a1 were adopted from 

0.0000227 to 0.0000237. 

Taking into account the above relationships, the instan-

taneous fuel consumption of the HEV (related to the dis-

tance) can be described using the formula: 

𝐐 =
𝟏𝟎𝟎 ∙ (𝐦

•
+𝐦𝐞𝐪

•
)

𝟑𝟔𝟎𝟎 ∙ 𝝆𝑭 𝐯
=
𝐦
•
+𝐦𝐞𝐪

•

𝟑𝟔 ∙ 𝝆𝑭 𝐯
 (55) 

The mileage consumption of the HEV is related to the 

cost function, which is associated with the predictive con-

trol model of the HEV's powertrain system energetic ma-

chines. The main objective of the presented energy man-

agement system is to minimise fuel consumption and 

equivalent fuel consumption. The parameter describing the 

total fuel consumption of the vehicle is determined by the 

relation [16]: 

J = ∑ (fuels
N−1
s=0 + αE∆SOC

2 ) → min   (56) 

∆SOC= {
SOCs − SOCd SOCs < SOCd 

0 SOCk ≥ SOCd 
 (57) 

Using the previous dependencies, the cost function takes 

the following form:  

J = ∫ ρ([m
•
(PE_des, τ)]

2N⋅td

0

+ [m
•

eq(PG_des, PM_des, τ)]
2

)}dτ

→ min 

(58) 

The expected value of the torque in the function of cost 

is related to the value of the output power from the system. 

Relation (58) takes the form of [34, 37]: 

J = ∫ [Ppre(τ) − PR]
2
+ ρ([m

•
(PE_des, τ)]

2

+
N⋅td
0

[m
•

eq(PG_des, PM_des, τ)]
2

)}dτ → min  
(59) 

Since the function of cost is non-linear, according to re-

lation (59) the control of the output parameters must be 

converted to the category m and meg:  

PE_des = ηE ⋅ Wu ⋅ m
•

  (60) 

Equations (51) and (53) take the form: 

Pdes =
m
•

eq

Cbat
−
rbat ⋅ m

•

eq

2

Voc
2 ⋅ Cbat

2 + PE (61) 

The linear model of the operational points themselves is 

as follows:  

TE
•

= −
1

τE
TE + Γeωe ⋅ ωE + Γem ⋅ m

•
     (62) 

TG
•

= ΓGTE ⋅ TE −
1

τG
TG (63) 

TM
•

= ΓMTE ⋅ TE −
1

τM
TM + ΓMωE ⋅ ωE + ΓMωM ⋅ ωM

+ ΓMeq ⋅ meq

•
 

(64) 

where: 

Γeωe = −
1

τE
⋅
η
e
⋅ Wu ⋅ m0

•

ωE0
2  ,Γem =

1

τE
⋅
η
e
⋅ Wu

ωE0

 (65) 

ΓGTE = −
1

τG
⋅

S1
R1 + S1

 (66) 

ΓMTE = −
1

τM
⋅ (

R1
S1 + R1

⋅
S2
R2
−

ωE0

ωM0

) (67) 

ΓMωE =
1

τM
⋅
TE0
ωM0

 (68) 

ΓMωM = −
1

τM ⋅ ωM0
2 ⋅ (

meq0

•

Cbat
−
rbat ⋅ meq0

2
•

V0C
2 ⋅ Cbat

2 + TE0 ⋅ ωE0) (69) 

ΓMeq = −
1

τM ⋅ Cbat ⋅ ωM0
⋅ (1 − 2

rbat

V0C
2 ⋅ Cbat

)  (70) 

The linear form of the energy management model is as 

follows: 

{
ẋ = Acx + Bc𝐮
y = Ccx + Dc𝐮

 , 𝐮 = [
m
•

meq

• ] 𝐲 = PR (71) 

Equation describing Ac:   
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           𝐀𝐜 =

[
 
 
 
 
 
 
 
 
 −

1

τE
0 0 Γeωe 0 0

ΓGTE −
1

τG
0 0 0 0

ΓMTE 0 −
1

τM
ΓMωE ΓMωM 0

E22

ED
− ρ ⋅ Cd ⋅ Af ⋅

S2
2⋅rd

3

R2
2⋅fd

3 ⋅ED
+

E12

ED
(

R1

R1+S1
)

E22

ED
− ρ ⋅ Cd ⋅ Af ⋅

S2
2⋅rd

3

R2
2⋅fd

3 ⋅ED
(

R1

R1+S1
)

E12

ED

R2

S2
0 0 0

−
E21

ED
+

E11

ED
(

R1

R1+S1
) −

E21

ED
(

R1

R1+S1
)

E11⋅R2

ED⋅S2
0 0 0

0 ΓsG ΓsM Γsωe ΓsωM 0]
 
 
 
 
 
 
 
 
 

  (72) 

 

𝐱 =

[
 
 
 
 
 
PE
PG
PM
ωE
ωM
SOC]

 
 
 
 
 

 (73) 

𝐁𝐜 =

[
 
 
 
 
 
Γem 0
0 0
0 ΓMeq
0 0
0 0
0 0 ]

 
 
 
 
 

 (74) 

𝐂𝐂
𝐓 =

[
 
 
 
 
 
 
 

R1
R1 + S1
0
R2
S2
0
0
0 ]

 
 
 
 
 
 
 

 (75) 

𝐃𝐜 = 0 (76) 

𝐱̇ = Acx + Bc𝐮
𝐲 = Ccx

 

where Ac described in (72): 
(77) 

The solution of the mathematical model presented 

above is the use of the LQT controller (Fig. 2) and the con-

version of the analytical version of the model to a discrete 

version.  

 

Fig. 2. LQT algorithm architecture  

The LQT controller uses input parameters that are the 

parameters of the model. Also, the linear form of the model 

(discrete) in order to search for the optimal (minimum) 

solution of the cost function J. The return compression is 

supposed to provide the optimal value of the cost function. 
The values of the input parameters for the implementa-

tion of the presented LQT algorithm are presented in Table 2. 
 

Table 2. Simulation parameters 

Machine Parameter Value 

Vehicle total weight 1630 kg 

combustion  

engine 

start delay 0.5 s 

time constant 1 s 

max. output power 73 kW 

electric motor output power 60 kW 

electrochemical 

energy storage 

system 

SOC upper level 

SOC lower level 

SOC objective 

0.75 

0.45 

0.60 

4. Test results 

4.1. Statistics of ICE 

The most important parameter that affects power was 

the torque of ICE. Within 616 seconds of travel, in the test 

it was measured 241 ICE operating points. This parameter 

has been ordered from the minimum to maximum value. 

After that, the created series was divided into groups. After 

calculating the frequency of occurrences in a given group, 

we obtained a distributive series. Each distributive series 

was characterized by the class intervals of groups and the 

number of cases occurring in subsequent groups. These are 

the parameters of the ICE statistics (Table 3) that were used 

to describe the distributive series. 

 
Table 3. ICE statistics parameters 

Distributive series – torque of the ICE 

Parameter Value 

Number of observations (n) 241 

Number of classes (k) √241 = 15.52 ⁓ 16 

Minimum value (Min) 0.01 Nm 

Maximum value (Max) 142 Nm 

Max-min 141.99 Nm 

(Max-min)/k 8.87⁓9 

Descriptive statistics – torque of the ICE 

Average 23.36 Nm 

Median 12.23 Nm 

Variance 670.93 Nm 

Standard deviation 25.90 Nm 

Lower Quartile 2.78 Nm 

Upper Quartile 36.83 Nm 

Skewness 1.33 

Kurtosis 1.14 

station 

{
𝐱̇ = Acx + Bc𝐮

𝐲 = Ccx
 

LQT controller  
discrete model 

input 

+ 

- 

ωG0

ωE0
ωM0
TE0
PE0
PM0
SOC0

m0

•

meq0

•

Ppre

 output, min J 

return compression (constraints) 

Reference trajectory 
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According to the presented graph (Fig. 2), the values of 

the ICE torque were divided into 16 classes. But in the last 

3 classes (117…142 Nm) there were no torque operating 

points. For this reason, 13 value classes have been selected 

to declare 13 reference trajectories.  

13 reference trajectories were described in Table 4 (be-

low) and were used in LQT algorithm architecture (Fig. 2). 

There were estimated based the equations of trend 

curves (values of ICE torque).  
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Fig. 2. Histogram of ICE torque (red line – expected normal) 

 

Table 4. Reference trajectory 

IF 0 < TE ≤ 9 Nm 

THEN: 

TEdes= −7 ∙ 10−7 ∙ 𝑛E 2 + 0.0033 ∙ 𝑛E − 0.3969 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 9 < TE ≤ 18 Nm 
THEN: 

TEdes= 3 ∙ 10−8 ∙ 𝑛E 2 − 0.0016 ∙ 𝑛E + 14.903 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 18 < TE ≤ 27 Nm 
THEN: 

TEdes= −1 ∙ 10−6 ∙ 𝑛E 2 + 0.0053 ∙ 𝑛E + 16.245 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 27 < TE ≤ 36 Nm 
THEN: 

TEdes= −1 ∙ 10−6 ∙ 𝑛𝐸 2 − 0.0058 ∙ 𝑛𝐸 + 38.056 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 36 < TE ≤ 45 Nm 
THEN: 

TEdes= −1 ∙ 10−6 ∙ 𝑛𝐸 2 + 0.001 ∙ 𝑛𝐸 + 42.293 
PEdes= TEdes⋅ ωE 
PEdes= P𝐸 

IF 45 < TE ≤ 54 Nm 
THEN: 

TEdes= 4 ∙ 10−7 ∙ 𝑛E 2 − 0.0008 ∙ 𝑛E + 48.387 
PEdes= TEdes⋅ ωE 
PEdes= P𝐸 

IF 54 < TE ≤ 63 Nm 
THEN: 

TEdes= −6 ∙ 10−6 ∙ 𝑛E 2 + 0.0196 ∙ 𝑛E + 46.391 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 63 < TE ≤ 72 Nm 
THEN: 

TEdes= −2 ∙ 10−6 ∙ 𝑛E 2 + 0.0069 ∙ 𝑛E + 59.273 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 72 < TE ≤ 81 Nm 
THEN: 

TEdes= −1 ∙ 10−5 ∙ 𝑛E 2 + 0.00457 ∙ 𝑛E + 42.177 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 81 < TE ≤ 90 Nm 
THEN: 

TEdes= −3 ∙ 10−5 ∙ 𝑛E 2 + 0.0859 ∙ 𝑛E + 27.572 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 90 < TE ≤ 99 Nm 
THEN: 

TEdes=−0.0002 ∙ 𝑛E 
2 + 0.3827 ∙ 𝑛E − 130.24 

PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 99 < TE ≤ 135 Nm 
THEN: 

TEdes= 5 ∙ 10−5 ∙ 𝑛E 2 − 0.1633 ∙ 𝑛E + 240.11 
PEdes= TEdes⋅ ωE 
PEdes= PE 

IF 135 < TE ≤ 142 Nm 
THEN: 

TEdes= −4 ∙ 10−6 ∙ 𝑛E 2 + 0.035 ∙ 𝑛E + 73.868 
PEdes= TEdes⋅ ωE 
PEdes= PE 

 

4.2. Speed profile 

On Figure 3 it was presented speed profile during the 

road tests.  

 

Fig. 3. Speed profile during the road tests 

 

The HEV’s speed varied from 0 km/h to 102 km/h over 

the entire period of time. The values of this parameter were 

characteristic for urban driving (less than or equal to 50 

km/h) and extra-urban driving (greater than 50 km/h). 

When driving below 50 km/h, the electric drive mode of the 

HEV was frequently engaged. Above this speed, the elec-

tric hybrid powertrain was operating in the Normal Drive 

Mode (NORMAL) 

4.3. Power of energetic machines 

On Figure 4, the degree of electrochemical charge of the 

energy storage system is presented. It is worth noting that 

the applied model predictive control contributes to a higher 

level of charge of the traction battery while driving.  

 

Fig. 4. Level of charge of the traction battery 

 

This is due to the energy accumulation system power 

values (Fig. 5), which translate into the level of battery 

charge. Negative power indicates charging of the energy 

storage system, while positive power indicates the discharg-

ing thereof.  

For the factory control, the power of the traction battery 

varies from –17.87 to 26.96 kW. For the model predictive 

control, the power of the traction battery varies from –20.16 

to 27.85 kW. 

 

0

20

40

60

80

100

120

0 100 200 300 400 500 600

S
p

ee
d

 [
k

m
/h

] 

Time [s] 

50%

52%

54%

56%

58%

60%

0 200 400 600

S
O

C
 

Time [s] 

MPC+LQT factory control



 

Modeling the fuel consumption by a HEV vehicle – case study 

COMBUSTION ENGINES, 2023;193(2) 79 

 

Fig. 5. Power of battery 

 

Fig. 6. Power of MG1 

 

For the factory control and for model predictive control, 

the power of the MG1 varies from –43.09 to 20.49 kW. 

 

Fig. 6. Power of MG2 

 

For the factory control, the power of the MG2 varies 

from –26.19 to 56.24 kW. For the predictive control, the 

power of the traction battery varies from –26.19 to 59.16 

kW. 

 

Fig. 7. Power of ICE 

 

For the factory control, the power of the internal com-

bustion engine varies from 0 to 26.50 kW. For the model 

predictive control, the power of the internal combustion 

engine varies from 0 to 27.58 kW. It can be concluded that 

the change of control type has an impact on the change of 

the power value of the internal combustion engine.  

An important fact is that the power of the battery de-

pends on the power balance of the generator and the electric 

motor. Hence, the negative power values of the electro-

chemical energy storage system indicate that the power is 

being recovered. This can be achieved during regenerative 

braking of the vehicle. Positive values of battery power 

indicate the use of energy accumulated in it. 

4.4. Rotational velocities of energy machines 

Rotational velocities of energetic machines (Fig. 8) are 

the same for both factory control and model predictive 

control of the system. 

 

Fig. 8. Rotational speeds of energetic machines  

 

The rotational speed of the internal combustion engine 

is between 0 and 4800 rpm. The rotational speed of the 

generator is between –4769 and 10,292 rpm. The rotational 

speed of the electric motor is between 0 and 7630 rpm. 
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4.5. Fuel consumption of internal combustion engine 

and electric motor 

Figure 9 and Fig. 10 show the equivalent consumption 

of fuel of the battery and the fuel consumption of the inter-

nal combustion engine.  

 

Fig. 9. Equivalent fuel consumption  

 

Fig. 10. Fuel consumption 

 

In the course of the factory control mode, the equivalent 

fuel consumption is between –0.42 g/s and 0.63 g/s. For 

model predictive control equivalent fuel consumption val-

ues range from –0.47 g/s to 0.65 g/s. 

The fuel consumption of the internal combustion engine 

reaches values from 0 to 2.22 g/s (factory control) and from 

0 to 2.06 g/s (MPC). 

4.6. Power map of the internal combustion engine  

Figure 11 presents power maps of the internal combus-

tion engine in the course of factory and model predictive 

control.  

On the basis of the graphs, some differences can be no-

ticed in the location of the useful power values of the en-

gine (with factory control and model predictive control). 

In the case of the factory control, the useful power val-

ues are distributed in the range from 0 to 26.5 kW. This 

corresponds to an overall engine efficiency from 0 to 34%. 

In the case of the model predictive control, most of the 

useful power of the internal combustion engine is concen-

trated in the range from 0 to 27.6 kW. For this type of con-

trol, the overall efficiency values of the internal combustion 

engine are between 0 and 34%. 

 

 

Fig. 11. Power map of the internal combustion engine 

5. Model validation 
Model validation was based on comparison of fuel con-

sumption value of the HEV according to the manufacturer, 

factory control and MPC with LQT (Table 5). 

 
Table 5. Mileage fuel consumption  

 mileage fuel consumption 

 [dm3/100 km] [mpg] 

factory control 1.90 123.78 

MPC 1.79 130.98 

Manufacturer 2.10 111.87 

 

The mileage consumption of the Toyota Prius 3 (2012) 

HEV provided by the manufacturer was determined on the 

basis of tests in established laboratory conditions (for  

a mixed cycle). It is 10% higher than the value of the mile-

age consumption of the HEV obtained on the presented 

route. The difference may be due to different measurement 

conditions. This could have been caused by other speed and 

acceleration values in road conditions, additional electric 

receivers turned off on the route, etc. The simulation of 

energy management of energetic machines according to 

MPC allowed to reduce the mileage fuel consumption from 

1.90 to 1.79 dm
3
/100 km. This is the HEV fuel consump-

tion savings of 4%. 
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6. Conclusion 
The mileage consumption of the Toyota Prius 3 (2012) 

HEV provided by the manufacturer was 10% higher than 

the value of the mileage consumption of the HEV obtained 

on the presented route. The evaluation of the HEV mileage 

fuel consumption in real road conditions according to MPC 

with 13 reference trajectories showed total fuel savings of 

4%. The energy management system used have good effect 

on SOC in comparison to factory control. Under MPC (with 

13 reference trajectories) at the end of the course SOC was 

6.7 % higher than under factory control. Changes of SOC – 

factory control: from 50.1% (the beginning) to 56.1% (the 

end of course); for MPC from 50.1% (the beginning) to 

59.9% (the end of the course). The research method used 

was a case study. The values of the mileage fuel consump-

tion were considered for one specific HEV model (and one 

specific route). Due to the great similarity in the design of 

the drive system of the test object and other HEVs, it can be 

assumed that the test results were general in nature. The 

percentage improvement in fuel economy in MPC can also 

translates into other HEVs. The adopted work methodology 

contained certain limitations. They included, among others 

road tests in urban and extra-urban conditions (motorway 

conditions have not been taken into account) as well as 

considering only mileage fuel consumption. The directions 

of future research follow directly from the limitations. It 

would be worth carrying out road tests of HEV fuel con-

sumption with MPC not only in urban and extra-urban 

conditions, but also in highway conditions. An interesting 

idea would also be road tests of HEV exhaust emissions 

with MPC. 

 
Nomenclature 

HEV hybrid electric vehicle 

ICE internal combustion engine 

MPC model predictive control 

MG1 generator 

MG2 electric motor 

Af frontal area of vehicle (m
2
) 

b specific fuel consumption (kg/Ws)  

Cd air drag resistance coefficient 

C1  number of teeth of the first set satellites (m)  

C2  number of teeth of the second set of satellites (m) 

fd  total gear ratio  

fr rolling resistance coefficient 

Fa air resistance (N) 

Fi inertia resistance (N) 

Fp propelling force (N) 

Fr rolling resistance (N) 

Fs slope resistance (N) 

F1  internal force between teeth of the first gear (N) 

F2  internal force teeth force of the second gear (N) 

fuels fuel consumption (g) 

g gravitational acceleration (m/s
2
)  

Ibat battery charging/discharging current (A) 

J cost function (g) 

JE  mass moment of inertia of the ICE (kgm
2
)   

JG  mass moment of inertia of the MG1 (kgm
2
) 

JR  mass moment of inertia of the planetary gear ring 

wheel (kgm
2
)  

JM  mass moment of inertia of the MG2 (kgm
2
)   

m total mass of vehicle (kg)   

m
•

  actual fuel consumption (kg/s)  

meq

•
  equivalent fuel consumption (kg/s) 

N number of steps 

Pbat power of battery (W) 

PE  power of the ICE (kW)  

PG  generator power (kW) 

PM electric motor power (kW) 

PR power of the ring gear of the planetary gear (kW)  

PEdes desired power of the ICE (kW)    

PGdes desired power of the generator (kW) 

PMdes desired power of the electric motor (kW) 

Ppre  expected system power (kW) 

Presis resistance power (kW) 

Qmax maximum battery capacity (Ah)  

Qused battery capacity used (Ah) 

rbat  internal battery resistance (Ω) 

rd dynamic wheel radius (m)  

R  number of teeth of the ring gear (m) 

R1  number of crown wheel teeth (m)  

R2 number of ring wheel teeth on the electric motor side (m) 

s step  

SOC state of charge (%) 

SOCd desired state of charge (%)  

S1  number of teeth of the first sun gear (m) 

S2  number of teeth of the second sun gear (m)  

t time (s)  

td jump (step level) 

Tbrk  brake torque (Nm)  

Tdes desired torque (Nm)  

Ubus voltage in the battery circuit (V) 

vveh  vehicle speed (m/s) 

VOC open-circuit voltage of the battery (V) 

Wu calorific value of fuel (J/kg) 

 slope of elevation (
0
)  

 penalty factor 

C1 angular speed of the satellite yoke C1 (1/s) 

E  angular speed of the ICE (1/s) 

G  angular speed of the generator (1/s)  

M  angular speed of the electric motor (1/s)  

R  angular speed of the crown wheel R (ring) (1/s)  

s1  angular speed of the sun wheel S1 (1/s)  

s2  angular speed of the sun wheel S2 (1/s) 

  coefficient occurring between the tracking error and 

the equivalent fuel consumption 

  air density (kgm
-3

)  

coulomb Coulomb efficiency 

C1 generator efficiency 

C2 motor efficiency 

C1/R efficiency between the first set satellites and the ring 

gear  

E overall engine efficiency 

fd final drive efficiency 
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R2/R efficiency between the second ring wheel teeth and 

the ring gear 

S1/C1 efficiency between the first sun gear and the first set 

of satellites  

τE internal combustion engine operation time (s)  

τG  generator operation time (s)  

τM  electric motor operation time (s) 
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