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The use of neural network algorithms for modeling injection doses of modern fuel 

injectors 
 

The article presents the possibilities of using artificial intelligence methods to model the injection doses of a modern Common Rail 

(CR) fuel injector. The presented neural network solution belongs to the experimental models known as black boxes in mechatronics. The 

backpropagation algorithm and its Levenberg-Marquardt expansion were used for the simulation. The analysis showed that there is  

a good match between the measurements and the computational model. The proposed solution can be used in the processes of 

diagnosing not only elements of the injection equipment, but also the internal combustion engine. 
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1. Introduction 
The fuel injector is a device whose task is to distribute 

and spray fuel in the combustion chamber of the engine. 
The operating conditions in which it operates are extreme 

due to the pressures and temperatures inside the engine. 
The problems related to its deficiencies should be consid-

ered in terms of destructive processes coming from the 

outside (working conditions) and from inside (quality and 

pollution from the fuel). The output operating parameters of 

the fuel injector are the injection dose amount and the fuel 

injection delay. These parameters directly affect the charac-

teristics of the internal combustion engine. As a result of 

the operation of the vehicle, the operating parameters of the 

fuel injector change. The process of diagnosis consists in 

analyzing them and assessing whether they are normal or 

not. However, standard diagnostics include individual 

points on the overall operating characteristics of the fuel 

injector. The research of the authors of the paper has shown 

that in some cases the analysis of individual points may be 

insufficient to diagnose a fuel injector. This applies in par-

ticular piezo injectors. 

In [1], the authors presented a problem with the diagno-

sis of a vehicle with Continental VDO Siemens piezoelec-

tric injectors installed. The engine ran unevenly at the speed 

of 1300–1800 rpm. The analysis showed that one of the fuel 

injectors generated too high injection dose in the pressure 

range of 40–90 MPa at the control time of 200 µs. The 

diagnosis of this fault took a long time because the tested 

injector was working properly during the standard test. In 

the paper [2], the authors proposed a method of diagnosing 

modern fuel injectors by analyzing the temperature of its 

body [3]. As a result of the leakage, the overflow dose 

increases, the liquid flow velocity inside the injector in-

creases, which results in an increase in the areas of in-

creased temperature leakage. The research on the diagnosis 

of CR injectors with the use of overflows has been de-

scribed in [4]. By modifying the test procedure, it is possi-

ble to shorten the diagnosis time of the fuel injectors, 

achieving its very high accuracy by using artificial intelli-

gence algorithms and implementing it into the test bench. 

The task of this process is to improve the methods of diag-

nosing elements of injection equipment by analyzing dosing 

areas omitted by the standard research process. 

In the paper, the authors proposed the use of a neural 

network to model the injection doses of the selected re-

search object. The proposed computational model can be 

compared to the experimental black box method [5] used in 

mechatronics. According to the authors of the above mono-

graph, the input and output parameters of the research ob-

ject as well as its structure and operation are known in the 

black box models (experimental), but the internal dimen-

sions are not known. This method can be implemented to 

model injection doses of modern fuel injectors (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Black box experimental model [2] 

 

The antagonistic theoretical modeling method in mecha-

tronics is the white box method. To use this method, it is 

necessary to know the internal dimensions and dependen-

cies in the operation of the tested object. By analyzing the 

structure and operation of the kinematic associations of 

modern fuel injectors, it can be concluded that the prepara-

tion of the theoretical model called the white box requires 

precise measurements of the elements of precise pairs, 

diameters and lengths of the channels in the atomizer and 

the body. This process is difficult to implement, it is indi-

vidual for each fuel injector and requires specialized meas-

uring equipment [6]. 

By analyzing the literature on the considerations of the 

artificial intelligence method were used to study internal 

combustion engines. In the work [7], the Bayesian and back 

propagation algorithms were used to diagnose a compres-

sion-ignition engine. The engine was tested at various rota-

tional speeds. The results of the analysis showed that the 
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back propagation algorithm simulates the engine operating 

parameters more accurately than the Bayesian network. By 

analyzing the results of the experiment, it can be concluded 

that it is possible to use artificial intelligence methods to 

supervise the operation of internal combustion engines. The 

authors of the paper [8] implemented a neural network to 

predict combustion characteristics for an engine powered 

by a vegetable fuel. Artificial intelligence prediction was 

compared with the AVL simulation model. The results of 

the experiment were similar. To monitor the technical con-

dition of a compression ignition engine, a neural network 

with the Random Convolutional Neural Network (RCNN) 

structure was implemented and described in [9]. Based on 

engine vibration during operation, artificial intelligence 

assessed its degree of wear. In order to detect early igni-

tions and knocking as a result, the authors of [10] devel-

oped an algorithm implementing artificial intelligence. The 

task of the neural network is to diagnose the combustion 

process in the engine during operation on the basis of data 

collected from the controller. The research presented in the 

paper [11] describes the diagnostic possibilities with the use 

of neural networks on the basis of engine noise. Based on 

the changes in engine noise during operation, the artificial 

intelligence algorithm assessed its technical condition. 

It is possible to use artificial intelligence when diagnos-

ing modern fuel injectors and assessing their output param-

eters. The authors of the paper developed an algorithm that 

models the size of injection doses using mechatronics 

methods on the basis of black box modeling. 

2. Presentation of the selected algorithm 
The process of learning neurons consists in calculating 

the sum of the values of the input products and the corre-

sponding weights. The obtained value is subjected to the 

action of an appropriately defined activation function to 

obtain the output neuron. Having reference characteristics, 

it is possible to define an error at the output of the neuron. 

A similar method is used for determining the errors for the 

last layer in the case of multilayer networks. The problem is 

defining the error value for hidden layers, because without 

a pattern, the algorithm is not able to determine the size of 

the neurons for these areas. The error back propagation 

method should be used to solve this problem. In order to 

derive this algorithm, the error measure should be defined, 

which is the function Q(w). In this function, the variables 

are all weights of the multilayer neural network. The train-

ing of the network consists in finding the minimum of the 

function Q with respect to the vector w. Then the function 

should be expanded into the Taylor series in the closest 

vicinity of the known current solution w along the p direc-

tion, relation (1) [2]. 

Q(w + p) = Q(w) + |g(w)|Tp + 0,5pTH(w)p + ⋯…, (1) 

where g(w) is the gradient vector and H(w) is a matrix of 

second derivatives. 

In general, the algorithm of the back propagation error 

method is written as follows (2)–(5) [9]: 

yi
(k)(t) = f (si

(k)(t)) , si
(k)(t) = ∑ wij

(k)Nk−1
j=0 (t)xj

(k)(t) (2) 

Qi
(k)(t) = {

di
(L)(t) − yi

(L)(t)dlak = L

∑ δm
(k+1)(t)wmi

(k+1)(t)Nk+1
m=1 dlak = 1,… , L − 1

 (3) 

δi
(k)(t) = εi

(k)(t)f |(si
(k)(t))  (4) 

wij
(k)(t + 1) = wij

(k)(t) + 2ηδi
(k)(t)xj

(k)(t) (5) 

The operation of the algorithm starts at the moment of 

providing the training pattern to the network input. First, it 

is processed by the neurons of the first layer which deter-

mine the output signal. The signals obtained in this way are 

inputs for the neurons of the next layer. This cycle contin-

ues until the last layer. Having known the output signal of 

the last layer and the reference signal from the training 

sequence, it is possible to calculate the error at the network 

output from the dependence (2). Then, the weights of the 

last layer neurons are modified using the dependencies  

(2)–(4). The output error is propagated backwards accord-

ing to the connections of neurons between the layers and 

taking into account their dependency activation function 

(2), (3). The second algorithm on the basis of which the 

neural network presented in the article was generated is the 

Levenberg-Marquardt algorithm. It uses the expansion of 

the function Q(w) expressed by the formula (1) to the third 

component [5]. 

3. Presentation of the results of measurements and 

simulations 
Laboratory tests were performed using a test bench for 

testing injection pumps and STPiW3 fuel injectors. The 

research object was an electromagnetic fuel injector from 

Bosch, serial number 0445110083, generation 1.0. 

The standard operating characteristics of the tested fuel 

injector were made on the test bench (Fig. 2). 

 

Fig. 2. Standard operating characteristics of the tested fuel injector  

– parameters measured on the test bench 

 

Then, the second operating characteristic was per-

formed, but with the injector control times changed (Fig. 3). 

Based on the parameters from the standard operating 

characteristics of the fuel injector (Fig. 2), the neural net-

work modeled the injection doses for the characteristic with 

changed control times (Fig. 4). 
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Fig. 3. Performance characteristics of the tested fuel injector – parameters 
measured on the test bench 

 

Fig. 4. Operating characteristics of the tested fuel injector – parameters 

modeled by the neural network 

 

Figures 5, 6 and 7 show the parameters for selected fuel 

injector control times. In Figures 5 and 6, the fit of the 

model is very high, while in 7, slight differences occur for 

pressures of 70 and 80 MPa. 

 

Fig. 5. Comparison of measured and calculated parameters for the injector 

control time of 475 µs 

 

Fig. 6. Comparison of measured and calculated parameters for the injector 

control time of 525 µs 

 

Fig. 7. Comparison of measured and calculated parameters for the injector 
control time of 675 µs 

4. Discussion of research results 
The model of the neural network proposed by the au-

thors consists of two inputs (pressure in the system and fuel 

injection time) and one output: injection dose size. This 

network consists of three hidden layers, of which the first 

and the third layer have five neurons each, and the second 

layer contains four neurons. The last layer is the output 

layer, which consists of one neuron. The number of layers 

depends on the complexity of the model (variables).  

A single neuron divides the plane into two parts. Two lay-

ers can represent simplexes, i.e. convex areas limited by 

hyperplanes. The three-layer network is able to define any 

area, therefore a network model with three hidden layers 

was chosen. The selection of the number of neurons in  

a given layer was selected according to Kolmogorov theo-

rem: the number of neurons in a layer should be 2n + 1 

where n is the number of inputs. So our network should 

have 5 neurons in each hidden network. However, during 

the tests it was noticed that the combination of 5–5–5 does 

not reflect the model perfectly. Then, the algorithm of back 

propagation of errors was selected, which is to select ap-

propriate weights for individual neurons during their train-

ing, and its modification, the Levenberg-Marquardt algo-

rithm. A neural network model with five neurons in each 

hidden layer is not an optimal solution. For the purposes of 

the research, an algorithm aimed at creating a neural net-
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work and training it was modified, which consisted in find-

ing the best structure, i.e. selecting such a number of neu-

rons in each of the three layers that the mean absolute error 

was as small as possible, determined by the relationship (6): 

 sbb = (∑(|Xi| − |Yi|))/n (6) 

where: sbb – mean absolute error, Xi – injector dose ob-

tained during measurements on the test bench, Yi – injector 

dose determined from the test bench, n – number of doses 

tested. 

With three layers of five neurons each, the authors cre-

ated an algorithm that checked 125 possible combinations, 

assuming the number of neurons in each layer from one to 

five. In addition, each network structure was trained five 

times and their mean absolute error was calculated to re-

duce the impact of the randomness of selecting weights at 

the beginning of learning a given structure. Our tests and 

analyzes show that building a neural network with a struc-

ture of 5–5–5 is suboptimal and burdened with high risk, 

and that the network used will be inaccurate. 

 
Table 1. Results of the mean absolute error of the neural network 5–5–5 

 1 2 3 4 

621 0.9180 5 5 5 

622 1.622 5 5 5 

623 2.5320 5 5 5 

624 0.8839 5 5 5 

625 0.7564 5 5 5 

 

Table 1 shows the values of the mean absolute errors for 

a particular network training attempt. In the best case, the 

error was 0.07564 and in the worst one it was four times 

higher. This structure is not very stable. Finally, the mean 

of all errors is 1.2505. It is far too high. Our criterion was 

that the error should not exceed 1. Table 2 shows the struc-

ture of the network 5–4–5 chosen as the most optimal. 

 
Table 2. Results of the mean absolute error of the neural network 5–4–5 

 1 2 3 4 

596 0.7973 5 4 5 

597 0.8165 5 4 5 

598 0.7605 5 4 5 

599 0.9139 5 4 5 

600 0.9960 5 4 5 

 

The smallest error is 0.7605 and the largest one is 

0.9960, the maximum difference is 0.2355. The error values 

are very close with each learning attempt. Additionally, 

their value does not exceed 1. Out of all 125 combinations 

this network structure, i.e. 5–4–5, is the most optimal for 

our tests. 

The analysis of the research carried out on the various 

combinations presents: 

– the best structures of a neural network, in which the 

error is as small as possible, are obtained in networks in 

which at least one hidden layer has 5 neurons, 

– the structure 5–5–5 is not very stable because during 

each learning the mean absolute error may differ several 

times from the previous learning, 

– Kolmogorov's statement is not accurate and may serve 

as a guideline for the selection of the shape of the neural 

network. 

After selecting the appropriate structure of the neural 

network, the process of its training began in order to 

achieve the lowest possible error. Structural science studies 

have shown that the lowest absolute error was achieved at 

the level of 0.6682. 

Table 3 shows the error values between the output pa-

rameters measured and calculated for each input data. 

 
Table 3. The size of the error between the parameters measured on the test 

bench and the model of the neural network structure 

 30 40 50 60 70 80 90 

425 –0.32 0.01 –0.30 0.09 –0.08 –0.56 –0.61 

475 0.32 –0.31 0.65 0.59 0.60 0.64 0.99 

525 –0.02 –0.26 0.20 –0.13 0.44 0.07 0.47 

575 –0.21 –0.05 –0.33 –0.06 0.09 –0.49 –0.64 

625 –0.03 –0.10 0.12 0.45 1.06 1.37 1.12 

675 0.97 1.47 0.88 1.26 2.42 4.30 1.49 

725 –0.15 0.53 0.67 1.63 1.24 0.68 1.27 

 

Analyzing the above results, the average error is 0.48 

mm
3
/H, the maximum error is 4.30 mm

3
/H and the mini-

mum one is –0.64 mm
3
/H. 

There are known computational methods for analyzing 

the amount of injection doses using polynomials. The dis-

advantage of these methods is that the input quantities are 

limited (only two data can be used). When using artificial 

intelligence methods, any number of inputs can be used, 

which is very important in diagnostic processes. 

5. Summary 
The analysis of simulation tests showed that it is possi-

ble to use artificial intelligence (AI) methods to model the 

size of injection doses of modern fuel injectors. The im-

plementation of the artificial intelligence algorithm is char-

acterized by a high fit, therefore the results of mathematical 

modeling are similar to the experimental ones. The aim of 

the simulation was to investigate whether it is possible to 

model the output parameters of a modern fuel injector 

without knowing its internal dimensions on the basis of 

modeling a standard operating characteristic. The Neural 

Network add-on of the Matlab environment was used to 

make the model. 

Further work carried out by the authors of the paper is 

aimed at improving the artificial intelligence algorithm by 

introducing additional input variables. The modification 

will consist in indicating to the algorithm how individual 

elements of the fuel injector affect the size of injection 

doses in individual areas of its operating characteristics. 

Additionally, the algorithm will be implemented in the test 

bench controller. The proposed algorithm can be used in the 

diagnostics of other engine components and the analysis of 

its current parameters during operation. The analytical 

methods proposed by the authors represent an innovative 

approach to prediction of injection doses of a selected fuel 

injector. 
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Nomenclature 

CI compression ignition 

CR common rail 

sbb mean absolute error 

Xi injector dose obtained from measurements on the 

test bench 

Yi injector dose modeled from the test bench 

N number of samples 

NN Neural Network 
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