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Vehicle exhaust emissions in the light of modern research tools: synergy of chassis 

dynamometers and computational models 
 
ARTICLE INFO  Assessing vehicle emissions is crucial for understanding their environmental impact and developing effective 

emission reduction strategies. This article discusses modern research tools that combine traditional laboratory 
measurements on chassis dynamometers with advanced theoretical models. Probabilistic methods, including 

stochastic processes based on Markov and semi-Markov chains, are important tools for modelling driving 

cycles, considering the variability of road conditions and driver behaviour. The article also presents 
mathematical approaches to emission data analysis, considering both the states of the technical system and the 

transitions between them, which allows for precise modelling of real vehicle operating conditions. Ultimately, 

the synergy of experimental measurements with computational modelling offers a more complete and accurate 
tool for assessing pollutant emissions, which is crucial in global efforts to improve air quality. 
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1. Introduction 
The dynamic development of motorisation is associated 

with the increasing impact of road transport on the envi-

ronment. Emissions of pollutants from motor vehicles pose 

a significant challenge for scientists and decision-makers 

responsible for environmental policy. Many decision-

making bodies would like to obtain precise data on the 

actual emissions of pollutants and fuel consumption of 

combustion engines, but achieving this goal is difficult [4]. 

Vehicle emissions are determined by many factors, in-

cluding driving style, road conditions, fuel type and quality, 

and emission control technologies [3, 17]. Vehicle emis-

sions depend on the nature of the vehicle and the interaction 

of factors such as traffic conditions [24], driving style [10], 

fuel quality and specifications [17, 21], the technology 

behind the vehicle design, such as ambient conditions [19], 

and emission control technology [3]. These factors deter-

mine the number and quantity of pollutants emitted during 

driving and cannot be replicated using engine test cycles. 

Numerous driving tests have been developed in re-

sponse to these limitations that simulate real-world vehicle 

operating conditions. Emissions tests are conducted on 

chassis dynamometers and real-world driving conditions 

under controlled laboratory conditions. Chassis dynamome-

ters precisely measure engine performance and emissions 

parameters in various scenarios, reflecting selected driving 

profiles. Their advantage is that they can control speed, 

load, and weather conditions. However, these tests are lim-

ited because they do not fully represent the changing oper-

ating conditions and driver behaviour [3]. 

In real traffic conditions, tests are conducted using mo-

bile emission analysers (PEMS – portable emissions meas-

urement system) [3, 21, 22], which record pollutant emis-

sions during regular vehicle operation. This method allows 

for more realistic results, considering various environmen-

tal and operational factors, but its accuracy may be limited 

by the lack of full control over all parameters. These tests, 

reflecting recorded speed curves and their synthetic equiva-

lents, form the basis of homologation tests. Despite their 

standardisation, they are insufficient to assess transport’s 

impact on the environment [25]. This is due to the complex-

ity and unpredictability of combustion engine operating 

states, resulting from, among other things, differences in 

drivers’ driving styles. Therefore, more and more attention 

is being paid to analytical methods that consider the sto-

chastic nature of operational processes. Among such meth-

ods, the Monte Carlo method [4, 8, 9, 13], widely used to 

model road pollutant emissions, occupies an important 

place. By generating data based on random realisations of 

stochastic processes, this method allows for estimating the 

impact of various operating conditions on emissions. How-

ever, its disadvantages, such as high input data require-

ments, time consumption and error sensitivity, limit its 

practical application. Moreover, the Monte Carlo method 

[8] does not consider sequential time dependencies in the 

data, which can lead to inaccuracies in representing dynam-

ic changes in real vehicle operating conditions. 

The dependability of evaluating engine performance re-

lies on the meticulous choice of an ideal prediction model 

for exhaust emission characteristics and the recognition of 

those parameters most conducive to precise prediction in 

single-cylinder four-stroke engines. Žvirblis et al. [26] 

revealed that although the chosen ideal model attained great 

accuracy in predicting most emission characteristics, nitro-

gen oxides (NOx) emissions proved particularly resistant to 

precise forecasting.  

The VALLUM01 tool, incorporating an artificial neural 

network (ANN), was designed to simulate and predict ex-

haust emissions and motor performance. It was tested for its 

applicability in evaluating diesel engine efficiency. The 
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tool’s intuitive interface facilitated efficient training, valida-

tion, and prediction processes [12]. The model’s capacity to 

adapt to various fuel types while preserving predictive 

accuracy is pivotal for advancing environmental monitoring 

and ensuring compliance with stringent emission regula-

tions. Through visual representations like histograms and 

scatter plots, the study emphasises the reliability and preci-

sion of the model, offering valuable insights into optimising 

diesel engine performance, refining fuel selection, and 

shaping operational strategies [15]. 

In light of these limitations, semi-Markov processes [6, 

7] offer a modern alternative, allowing for more precise 

modelling of road pollutant emissions. They allow for con-

sidering transitions between different vehicle operating 

states, which is crucial for accurately representing changing 

operating conditions. This makes it possible to generate 

detailed distributions of pollutant emissions in real operat-

ing conditions, which is an important step towards a better 

understanding of the impact of road transport on the envi-

ronment. 

The dependencies of emissions on average speed esti-

mated in this way can be used, for example, to create mod-

els for estimating pollutant emissions. Currently, many 

models for estimating pollutant emissions support laborato-

ry and field studies. The most well-known models include 

COPERT (Computer Programme to Calculate Emissions 

from Road Transport) [15] and HBEFA [5] (Handbook 

Emission Factors for Road Transport). COPERT, devel-

oped by the European Environment Agency, is based on 

input data such as vehicle type, mileage, fuel type and driv-

ing profile. This model is widely used for emission invento-

ries in Europe. HBEFA, on the other hand, offers detailed 

emission factors for different types of vehicles and driving 

scenarios, making it a valuable tool for regional studies. 

In addition, integrating results from chassis dynamome-

ter tests, real traffic conditions, and modelling creates the 

possibility of a more comprehensive approach to analysing 

pollutant emissions. Models such as COPERT and HBEFA 

can be calibrated using real data, which increases their 

precision and usefulness in the analysis of the impact of 

road transport on the environment. 

By developing methods such as semi-Markov processes, 

scientists can contribute to creating more effective emission 

analysis tools and support informed decision-making in 

environmental policy and the design of green transport 

solutions. Additionally, in the context of applying modern 

analytical tools such as semi-Markov processes or road 

emission models (COPERT, HBEFA), responsible research 

and innovation play an increasingly significant role in sup-

porting enterprises in the development of sustainable opera-

tional processes [14]. This article presents the application of 

semi-Markov processes to determine road emission distri-

butions in real vehicle use conditions, analysing their poten-

tial and disadvantages compared to other methods. This 

article presents the application of semi-Markov processes to 

determine road emission distributions in real vehicle use 

conditions. It also includes tests on chassis dynamometers, 

analyses in real traffic conditions and the use of existing 

emission estimation models, which allows for a compre-

hensive assessment of pollutant emissions from road 

transport. 

2. Research problem 
Road emissions, an important indicator of the ecological 

properties of vehicles, determine the mass of pollutants 

emitted per unit of distance travelled. This is a dynamic 

parameter, strictly dependent on the engine operating con-

ditions, which can be characterised by the following fac-

tors: engine load, engine speed, engine thermal state, in-

cluding temperatures of individual components and engine 

systems (e.g. coolant and lubricating oil) and ambient con-

ditions [1, 23]. 

Each of the above parameters significantly impacts the 

amount of pollutants emitted, which emphasises the com-

plex nature of assessing the impact of road transport on the 

environment. The dynamics of road emissions can be de-

scribed using operator relations that consider the complexity 

of the processes occurring during engine operation [3, 4, 8]. 

The operating state of an internal combustion engine in 

traction operation is determined by factors such as vehicle 

speed, motion resistance and the specifics of the vehicle de-

sign, including the configuration of the drive system [3, 20]. 

For engine operating conditions with a stable thermal 

state and comparable driving conditions, pollutant emission 

is largely determined by the vehicle speed profile. There-

fore, traffic models that represent speed profiles play a key 

role in estimating emissions [3, 20]. A similar analytical 

approach can be observed in studies addressing the 

transport of materials and its impact on energetic efficiency, 

highlighting the importance of complex production and 

logistics processes in evaluating emissions [16]. 

To better understand the relationship between emissions 

and speed profiles, it is necessary to determine the point 

characteristics of these profiles. This approach allows for 

the analysis of the dependence of road emissions on repre-

sentative parameters, such as the arithmetic mean value of 

speed. Alternatively, other indicators can be used, such as 

the mean value of the acceleration module or the speed and 

acceleration product module. These characteristics provide 

the basis for a more comprehensive analysis of emissions in 

various vehicle traffic scenarios. To determine the pollutant 

emission characteristics, the speed profiles of vehicles in 

homologation driving tests. 

A passenger car with a spark-ignition engine with a dis-

placement of 1798 cm
3
 was used for the tests (Fig. 1). 

 

Fig. 1. A research stand with a test object 
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Analytical tests were carried out: the first was conduct-

ed in real city traffic conditions, with the measurement 

route covering 12 kilometres from Plac Wilsona to Galeria 

Mokotów in Warsaw, and then repeated on a vehicle dyna-

mometer. The map presenting the measurement route was 

developed using Google Maps (Fig. 2). 

 

Fig. 2. Measurement route 

 

The measurements were taken with the Semtech DS test 

equipment (Fig. 3). The Sensors Inc. analyser, type Sem-

tech DS, measures emissions in real road traffic conditions, 

modelled on a chassis dynamometer. The set of flow meters 

in the device allows for measuring exhaust emissions from 

most engines that power motor vehicles. 

 

Fig. 3. Test vehicle with Semtech DS test equipment installed 

 

The test was based on a synthetic test eproducing a cy-

cle of urban traffic. Pollutant emission measurements were 

performed using Semtech DS equipment in real road condi-

tions. Then, the same cycle was reproduced on a chassis 

dynamometer, where pollutant emission measurements 

were again performed. For the measurement of methane, an 

analyser manufactured by AVL Emission Test Systems 

GmbH, type AVL FID i60 LHD GV0596, was used. 

The results obtained from the empirical tests included 

parameters such as vehicle speed, acceleration, pollutant 

emission and fuel consumption. This article used only the 

results for methane (CH₄) and nitrogen oxide (NO) emis-

sions.  

3. Methodology 

3.1. Semi-Markov process 

Let (Ω, ℱ, P) be a probability space, the finite set of 

states will be denoted as S = {s1, s2, ⋯ , sk}, ℕ and ℝ are 

the sets of natural numbers, including zero and real num-

bers, respectively. We usually model the behaviour of  

a technical system by a stochastic process, i.e. sequence of 

random variables {Xt}t∈ℝ, and then the realisations of these 

random variables belong to the set S, Xt: Ω → S. {Xt}t∈ℝ 

process is called a continuous-time stochastic process, but 
{Xt}t∈ℕ – discrete-time stochastic process. 

Markov chains [6] are often used to describe the behav-

iour of technical systems. 

Definition 1. (Markov process) The discrete-time sto-

chastic process {Xt}t∈ℕ is called a Markov chain if the 

property 

P(Xn = xin|Xn−1 = xin−1 , Xn−2 = xin−2 , … , X0 = xi0) =

                       P(Xn = xin|Xn−1 = xin−1).  (1) 

is satisfied for any n ∈ ℕ and states xi0 , xi1 , … , xin ∈ S. 

In many cases, the transition probability P(Xn+1 =

= xj|Xn = xi) = pij(n) from state xi ∈ S to state xj ∈ S 

does not depend on moment n, i.e. pij(n) = pij for any 

moment n ∈ ℕ. Such a stochastic process is called a homo-

geneous Markov chain. 

To describe the behaviour of a technical system based 

on a homogeneous Markov chain [6, 7] we estimate the 

transition probability matrix P = [pij]i,j=1,2,…,k
 between 

states. For {xt}0≤t≤n sequence of realisation of Markov 

chain, where xt ∈ S for 0 ≤ t ≤ n. For i = 1,2, … , k we 

determine the number of times the system was in the state 

si as ni = #{t: xt = si, 0 ≤ t ≤ n} and ∑ ni
k
i=1 = n. Addi-

tionally, value nij = #{t: xt = si, xt+1 = sj, 0 ≤ t ≤ n − 1} 

for 1 ≤ i, j ≤ k denotes the number of transitions from state 

si to state sj and ∑ nij
k
j=1 = ni. The value of transition prob-

ability form state si to state sj we designate as p̂ij =
nij

ni
 for 

1 ≤ i, j ≤ k, thus matrix P = [p̂ij]1≤i,j≤k
 is the estimated 

transition probability matrix of homogeneous Markov chain. 

The transition probability from state xi to state xj in m > 0 

steps for homogeneous Markov chain is equal P(Xn+m =

xj|Xn = xi) = pij
m. Let p(0) = (p1(0), p2(0), … , pk(0)), 

where pi(0) = P(X0 = xi) for xi ∈ S and 0 ≤ pi(0) ≤ 1, 

i = 1,2, … , k with condition ∑ pi
k
i=1 (0) = 1 is the initial 

distribution of X0 random variable. When the initial distri-

bution p(0) of X0 a random variable is known, then the 

probability distribution p(n) = (p1(n), p2(n), … , pk(n)) of 

Xn random variable describing the state of the system at the 

moment n (distribution states after n transitions) is deter-

mined by the formula: 

 p(n) = p(0)Pn  (2) 

where [pij
m]

1≤i,j≤k
= Pm. 
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A semi-Markov process was used to identify the behav-

iour of vehicle travel in the city. In the presented research 

semi-Markov is a continuous-time stochastic process, 

where the sojourn time distribution in a state depends on 

the current and the future states. From above, we describe 

the behaviour of vehicle travel as a sequence of states by 

applying a Markov chain and analyse the sojourn time in 

states (time spent in state) [6, 7]. 

Definition 2. (Semi-Markov process) [7] The right-

continuous and piecewise constant stochastic process 
{Xt}t≥0 is called a semi-Markov process, if: 

1. the sequence of random variables {Xtn}n∈ℕ
 for t0 <

t1 < t2… (tn ∈ ℝ, n ∈ ℕ) is a homogeneous Markov 

chain with transition probability matrix P = [pij]1≤i,j≤k
, 

where pij = P(Xtn+1 = xj|Xtn = xi) and i, j ∈ ℕ; 

2. the distribution of sojourn time τn = tn+1 − tn, 

n = 1,2, …, a time when the process spent in the current 

state xi from moment tn to moment tn+1 = tn + τn and 

jump to the future state xj at the moment tn+1 depends 

on the current state and the future states, i.e. the proba-

bility P(τn ≤ t|Xtn = xi, Xtn+1 = xj) depends on only 

states xi and xj. 

Below, it was assumed that Xtn = Xn for n ∈ ℕ. Thus 

semi-Markov process {(Xn , tn)}n∈ℕ is a pair process charac-

terised by both embedded Markov chain {Xn}n∈ℕ and the 

sojourn time stochastic process {τn}n∈ℕ corresponding 

Markov chain, where tn = t0 +∑ τj
n
j=1  for n ∈ ℕ. 

3.2. Sojourn time distribution 

A Weibull distribution [7] was used to analyse sojourn 

time, where the density function is given as follows 

 f(x, a, b) =
a

b
(x/b)a−1e−(x/b)

a
, x > 0  (3) 

but the distribution function 

 F(x, a, b) = 1 − e−(x/b)
a
, x > 0   (4) 

where shape parameter a > 0 and scale parameter b > 0. 

For semi-Markov processes at the moment tn system 

transitions to state xi and spends in this state τn time, but at 

the moment tn+1 = tn + τn it transitions to the next state 

xj, 1 ≤ I, j ≤ k. Based on the sequence of realisation of 

sojourn times {τn}0≤n≤m and corresponding them 
{xn}0≤n≤m, xn ∈ S sequence of states, which is Markov 

chain, first we determine the subsequences Tij = 

= {τl: xtl = si, xtl+1 = sj, 0 ≤ l ≤ m}. The Tij subse-

quence denotes the sequence of realisations of sojourn 

times when the system had si state and moved to state sj, 

1 ≤ i, j ≤ k. 

If Tij ≠ ∅, then for a sojourn time of the system in state 

si and transition to state sj we estimate aij and bij parame-

ters of Weibull distribution by applying Maximum Likeli-

hood Method. Let f(t, aij, bij) be density function of the 

time spent in state si and transition to state sj. Based on 

transition probability matrix P and formula (3) then the 

density function of τ random variable denoting the sojourn 

time in state si (X random variable denoting the state of the 

system takes a value si) is as follows 

 fi(t) = ∑ fk
j=1 (t, aij, bij)p̂ij  (5) 

but from (4), the distribution function of the sojourn time in 

state si is given as follows 

 Fi(t) = P(τ ≤ t|X = si) = ∑ p̂ij
k
j=1 ∫ f

t

0
(z, aij, bij)dz (6) 

where 1 ≤ i ≤ k. 

3.3. States detection and simulation of cycles 

States detection 

The vehicle’s passage in real conditions is described by 

staying in the states A − acceleration, B − braking, D − 

driving, S − stop. The sequence of states creates cycles. To 

identify the states in real conditions, the authors analysed 

the vehicle speed reading (km/h), which was presented as  

a time series {vt}0≤t≤n, where v0 = 0. For each moment, 

1 ≤ t ≤ n was considered the subsequence 

{vt}max(0,t−p)≤t≤min(n,t+p), where p ≥ 1, p ∈ ℕ denotes the 

maximum displacement from the moment t for which the 

speeds are taken into account. The analysis of the subse-

quence {vt}max(0,t−p)≤t≤min(n,t+p) (containing at most 

2p + 1 realisations) allows us to eliminate instantaneous 

changes in the vehicle’s state. To identify the vehicle’s state 

at time t based on the realisation {vt}max(0,t−p)≤t≤min(n,t+p) 

the linear dependence of velocity on time was analysed, and 

the authors considered a model 

 vj = α0
t + α1

t (j − t) + ε (7) 

where ε is a random variable with a normal distribution 

N(0, σ2) and max(0, t − p) ≤ j ≤ min(n, t + p).  
Using the least squares method [10], the structural pa-

rameters of the model (7) were determined and the se-

quences {α0
t }0≤t≤n and {α1

t }0≤t≤n were obtained, where for 

the moment t = 0 was assumed α0
0 = α1

0 = 0. The parame-

ter estimator α0
t  denotes the average velocity in the time 

interval from the moment max(0, t − p) to the moment 

min(n, t + p), while α1
t  denotes the acceleration in this 

interval. To classify the states, vmin (minimum vehicle 

speed below which we assume that the car is stopped) and 

αmin (absolute value of acceleration below the level αmin 

means driving) were established, constant or stop). Based 

on the series of vehicle speed readings {vt}0≤t≤n the states 

were defined as follows 

 xt =

{
 

 
S, α0

t < vmin or vt = 0

A, α0
t ≥ vmin and α1

t > αmin
B, α0

t ≥ vmin and α1
t < −αmin

D, other

 (8) 

Acceleration estimation 

While moving the vehicle, changes in speed were also 

analysed in states A − acceleration, B − braking, D − driv-

ing. For each of the above mentioned states the acceleration 

was modelled using a normal distribution N(m, σ2), where 

the density function is defined as follows 

 f(x,m, σ) =
1

√2πσ
e
−
(x−m)2

2σ2  (9) 
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where m ∈ ℝ and σ > 0. The parameters m (mean) and σ 

(standard deviation) were estimated by applying the Maxi-

mum Likelihood Method [19]. 

3.4. Cycle simulation algorithm 

Below, the algorithm (Fig. 4) of cycle simulation is pre-

sented. According to the semi-Markov process [7], this 

algorithm consists of two parts. The first part contains  

a simulation of the sequence of vehicle states which has 

Markov property (1), but in the second part, the sequence of 

sojourn times with subsequence’s of vehicle speed accord-

ing to formula (8) is simulated. 

1. Put v0 = 0, t = 0 and vehicle state x0 = S 

2. Draw a sequence of states {xt}1≤t≤n, whose realisations 

correspond to a Markov process with a probability ma-

trix P and xt ∈ {A, B, D, S} 
3. Choice {xt}1≤t≤m realisation, where m = max{k: xk =

S, 1 ≤ k ≤ n} (truncate the sequence, where the last 

state is Stop) 

4. Put j = 0, T0 = 0 

5. While j ≤ m 

j = j + 1 

case: xj = S 

draw τj with FS(t) distribution function (6) 

for i = 1: [τj]: 

    t = t + 1 

   vt = 0 

     Tj = t 

case: xj = B 

   draw τj with FB(t) distribution function (6) 

   while vt > 0: 

      t = t + 1 

draw g with N(mB, σB
2 ) distribution (draw  

acceleration for braking state) 

         vt = {
max(0, vt−1 + g), t ≤ Tj + τj
0, t > Tj + τj

 

     Tj = t 

case: xj = A 

   draw τj with FA(t) distribution function (6) 

   while vt < vmax and t < Tj + τj: 

    t = t + 1 

   draw g with N(mA, σA
2 ) distribution (draw accel-

eration for acceleration state) 

     vt = min(vmax, vt−1 + g) 
     Tj = t 

case: xj = D 

   draw τj with FD(t) distribution function (6) 

   while t < Tj + τj: 

      t = t + 1 

    draw g with N(mD, σD
2 ) distribution 

(draw acceleration for driving state) 

vt = max(0,min(vmax, vt−1 + g)) 

     Tj = t 

As a result of the algorithm, we obtain {xj}0≤j≤m
 se-

quence of states and {Tj}0≤j≤m
 the sequence of moments,  

 

where the vehicle state is changed, and {vt}0≤j≤Tm sequence 

of vehicle speed. 

3.5. Road emissions 

For the pollutant, the data set D = {(vt, bt): 1 ≤ t ≤
n, vt ≥ 2} was analysed, where vt denotes the vehicle speed 

at the time t, bt – the pollutant at that time, 1 ≤ t ≤ n. In 

state S (stop, vehicle speed less than vmin) the expected 

emission b̂S for each moment is estimated as the mean of 

pollutant when the vehicle had state S 

b̂S =
1

nS
∑ bi

i∈{k:xl=S,1≤l≤n}

                 (10) 

where nS = #{k: xl = S, 1 ≤ l ≤ n} denotes the number of 

moments where the vehicle was in state S. 

Readings where the vehicle speed exceeds vmin (vehicle 

takes the states: Braking, Acceleration, Driving) were used 

for the analysis. From the Sensors Inc. analyser, type Sem-

tech DS, pollutants in g/s were recorded. Then, for each 

pollutant for the time t, we determine the road emission 

road emission expressed in [g/km] as follows 

yt =
bt
vt
3600 

for 1 ≤ t ≤ n. 

The authors analysed the dependence of road emissions 

y on vehicle speed v, i.e. yt = y(vt). The relationship be-

tween emissions and speed was presented as follows 

y = α0 + α1v + α2 (
v

α3
)
α4−1

e
−(

v
α3
)
α4

+ ε   (11) 

where ε is a normally distributed random variable N(0, σ2). 
In the equation (11) the component α0 + α1v represents the 

scale of pollutant emissions associated with higher vehicle 

speed (it has a smaller effect at lower speeds), while the 

component α2 (
v

α3
)
α4−1

e
−(

v

α3
)
α4

 represents the scale of 

pollutant emissions associated with lower vehicle speed (it 

has a smaller effect at higher speeds). The parameter α2 is 

responsible for the scale of pollutants generated by the 

vehicle for higher speeds, and the parameters α3 i α3 corre-

spond to the scale and shape of the impact of lower speeds, 

on the pollutant emission curve (they are mainly responsi-

ble for the rate of emission decrease with increasing speed). 

According to the information presented below, we have an 

exponential decrease in pollution for lower speeds. In com-

parison, for higher speeds, we have an increase similar to  

a linear trend (from (11)). It is not exactly a linear depend-

ence on speed, but as speed increases with the appropriate 

choice of parameters α3 and α4 in the limit, we have a line-

ar trend). 

Based on the sequence {(yt, vt)}1≤t≤n we estimate the 

unknown parameters in equation (11) by using the least 

squares method [18, 19] and solving the optimisation prob-

lem 

 min
α∈G

F(α) (12) 

where the objective function is given as follows 
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Fig. 4. Diagram of the cycle simulation algorithm 
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F(α) =∑(yt − α0 − α1vt                                             

n

t=1

− α2 (
vt
α3
)
α4−1

e
−(
vt
α3
)
α4

)

2

           (13) 

while the set of possible solutions is defined as G =
{(α0, α1, α2, α3, α4) ∈ ℝ

5: α0, α1, α2, α3, ≥ 0,0 < α4 < 1}. 

4. Results and discussion 
Figure 5 shows the vehicle course determined using the 

described model, with the individual states marked braking, 

acceleration, driving, and stop. 

 

Fig. 5. Vehicle mileage determined using the model 

 

The probabilities of transitions between states were es-

timated (Table 1). The table below shows the transition 

probability matrix between states, while Fig. 6 shows the 

transition probability between states. 

 
Table 1. State transition probability matrix 

 Braking Acceleration Driving Stop 

Braking 0.00 0.000 0.320 0.680 

Acceleration 0.00 0.000 1.000 0.000 

Driving 0.61 0.293 0.000 0.098 

Stop 0.00 0.857 0.143 0.000 

 

Fig. 6. Transition probability between states 

 

A parametric identification of the Weibull distribution 

was performed for random variables describing the transi-

tion time between states (Tables 2 and 3). 

Table 2. Shape parameters of Weibull distribution of transition time be-

 tween states 

 Braking Acceleration Driving Stop 

Braking – – 1.956 3.482 

Acceleration – – 1.807 – 

Driving 1.173 1.065 – 2.617 

Stop – 0.915 1.854 – 

 
Table 3. Scale parameters of Weibull distribution of transition time be-

 tween states 

 Braking Acceleration Driving Stop 

Braking – – 6.454 11.729 

Acceleration – – 9.121 – 

Driving 10.408 4.966 – 6.222 

Stop – 20.467 25.055 – 

 

The examination of transition durations between vehicle 

states offers valuable information into vehicle movement 

across various driving stages. Transitions from braking to 

driving are typically rapid and very predictable, indicating 

that braking frequently functions as a brief adjustment prior 

to the vehicle returning to stable motion. Conversely, tran-

sitioning from braking to a complete stop is a more gradual 

and consistent procedure, typically requiring a longer dura-

tion, which is logical considering the necessity to halt the 

vehicle smoothly. 

The data indicates that the transition to driving accelera-

tion exhibits variability, since the vehicle requires time to 

stabilise its speed following an increase in velocity. Transi-

tions from driving to braking are similarly affected by sev-

eral circumstances, including road conditions and traffic, 

resulting in increased variability, however they transpire 

rather swiftly. Transitions from driving to a stop are notably 

more direct and expedient, perhaps because halting fre-

quently occurs in response to traffic signals, junctions, or 

other unequivocal indicators. 

Using the formula (5), the density functions were esti-

mated as a mixture of Weibull densities for sojourn time for 

each state. The results are shown in Fig. 7. The figure offers 

a detailed examination of the duration vehicles generally 

spend in various states – braking, accelerating, driving, and 

stopping – and illustrates distinct behavioral tendencies. 

Braking and accelerating are rapid and transient, whereas 

driving represents the primary, stable condition. Stopping 

exhibits significant variability, encompassing brief pauses 

to extended delays. These patterns illustrate the inherent 

cadence of driving and halting, presenting opportunities to 

enhance driving fluidity and efficiency. For instance, reduc-

ing superfluous stops or enhancing transitions between 

states may conserve fuel and diminish emissions. This 

analysis can enhance traffic flow, vehicle performance, and 

the overall driving experience.  

For example, based on model (11), structural parameters 

of road emissions were estimated for nitric oxide (NO) and 

methane (CH4) pollutants, as pollutants that are most sensi-

tive to changes in vehicle speed, especially in urban traffic, 

where changes in speed lead to their increase [18]. 

The structural parameters for the above pollutants are 

estimated by solving task (12) and presented in Table 4, 
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while the model’s fit (11) to empirical data is presented in 

Fig. 8 and 9. 

 

Fig. 7. Density functions of sojourn time in states 

 

Figure 7 highlights the effects of vehicle speed on nitric 

oxide emissions. At very low speeds – below 10 km/h –

emissions are higher, which makes sense given that stop-

and-go traffic or idling in city environments often leads to 

inefficient fuel use and higher pollution.  

Emissions drop and reach their lowest point around 20–

25 km/h as the car accelerates. With cleaner and more con-

sistent combustion, this suggests that engines work most 

effectively at these modest speeds. 

The trend changes and nitric oxide emissions begin to 

grow continuously at speeds above 30 km/h, though. Great-

er engine loads, more fuel consumption, and higher com-

bustion temperatures are probably the causes of this rise. 

Emissions vary greatly at speeds above 50 km/h, which 

could be affected by things like road inclines, vehicle con-

dition, or driver acceleration and maintenance of speed. 

 
Table 4. Structural parameter values and standard deviation of residuals 

 α0 α1 α2 α3 α4 

NO 0 0.0264316 4.3705415 2.198382 0.8459142 

CH4 0.0138863 0.0023000 0.3217594 14.765735 0.0039383 

 

Figure 8 reveals some fascinating trends and shows un-

equivocally how vehicle speed influences methane emis-

sions. Emissions are rather high, usually exceeding 1.0 

units, at extremely low speeds – less than 10 km/h. This 

makes it logical, as idling in cities or stopping-and-go traf-

fic usually results in poor fuel economy and incomplete 

combustion. Emissions drop significantly, though, and 

stabilise at about 20 km/h as the car accelerates. This re-

veals that engines generate less methane and run far more 

effectively at reasonable speeds. 

Methane emissions remain low and consistent between 

20 and 40 km/h, indicating that this speed range is excellent 

for the lowest emissions. Emissions start to rise somewhat 

after 40 km/h, probably because faster speeds demand more 

from the engine, therefore increasing fuel consumption and 

lowering combustion efficiency. Still, this rise is far smaller 

than the sharp decline experienced at slower speeds. 

 

 

Fig. 8. Dependence nitric oxide (NO) emission of road nitrogen oxide 
 emissions on speed 

 

Fig. 9. Dependence methane (CH4) emission of road methane emissions 

 on speed 

 

The data also shows variation in emissions, especially at 

slower speeds, which could rely on elements including the 

type of vehicle, its condition, fuel quality, or driving style. 

This unpredictability reduces as speed rises, most likely 

when the engine runs more steadily. 

Overall, engines are most effective between 20 and 40 

km/h, the sweet spot for low methane emissions. High 

emissions at slower speeds draw attention to the need for 

improved urban traffic management – minimising idling 

and maximising stop-and-go strategies. The little increase 

at higher speeds indicates, nevertheless, the need to drive 

effectively on open highways to control emissions. These 

realisations can support better, more environmentally 

friendly driving habits. 

From formulas (10) and (11) based on time series 

{vt}1≤t≤p denoting the speed of a vehicle and corresponding 

them the sequence of states{xt}1≤t≤p we estimate the ex-

pected total pollution during vehicle mileage as follows 

B = nSb̂S + ∑ y

i∈{k:xl≠S,1≤l≤p}

(vi)
vi

3600
           (14) 

where nS = #{k: xl = S, 1 ≤ l ≤ p}. 
For vehicle mileage presented in Fig. 5 and dependence 

of road emissions on speed presented in Fig. 8 and 9, the 
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expected total nitrogen oxide pollution equals 1.119 g and 

methane pollution equals 0.641 g. 

5. Conclusions 
The study employed a semi-Markov process to identify 

the actual vehicle journey, with transition probabilities 

between states and idle times within states modelled using  

a Weibull distribution. This approach captured changes in 

speed during braking, acceleration, and driving states. Lev-

eraging these elements, an algorithm was developed to 

simulate driving cycles, accurately reflecting the vehicle’s 

mileage. 

This versatile algorithm enables simulations of various 

travel durations; while the study demonstrates a 20-minute 

drive, the algorithm can accommodate simulations of any 

desired driving time. A model was used to estimate road 

emissions, which correlates emissions with vehicle speed 

and is characterised by an exponential decrease at lower 

speeds and a distinct trend at higher speeds. 

Integrating the algorithm and the emissions model al-

lows vehicle journeys to be simulated under real traffic 

conditions. This integration facilitates the estimation of 

expected emissions across the entire speed profile, account-

ing for the nuances of actual driving scenarios. 
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