Article citation info:
Szumska E, Skuza A. Enhancing regenerative braking efficiency in electric vehicles through urban driving pattern analysis. Combustion
Engines. 2025;203(4):191-200. https://doi.org/10.19206/CE-207871

Emilia SZUMSKA
Adriana SKUZA

GCombhustion Engines

Polish Scientific Society of Combustion Engines

Enhancing regenerative braking efficiency in electric vehicles through urban
driving pattern analysis

ARTICLE INFO Electric vehicles offer a sustainable alternative to internal combustion engine vehicles, significantly reducing
emissions and improving energy efficiency. A key feature is the regenerative braking system, which recovers
kinetic energy during braking. This study examines how braking parameters affect energy recovery in EVs under
urban conditions, combining real-world data with simulation. The research involved two stages: data collection
from 60 urban trips using a Hyundai Kona Electric, followed by AVL Cruise simulations. Statistical analysis
(correlation and K-Means clustering) assessed the relationship between braking parameters (number of events,
average braking speed, deceleration, maximum braking force) and recovered energy. Results showed a strong
correlation (r = 0.9) between the number of braking events and recovered energy, highlighting the importance of
frequent urban braking. Clustering identified four driving patterns. Cluster C4, with the highest number of
braking events (84-158) and moderate intensity, achieved the greatest energy recovery efficiency (23.16%).
Cluster C1, with fewer events (26-76) and smoother driving, showed the lowest efficiency (18.45%). The
average efficiency across all trips was 21.47%, consistent with the literature. Findings suggest that frequent,
moderate braking in dense urban traffic optimizes energy recovery. The study offers practical insights for
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designing more efficient regenerative systems and promoting driving techniques that enhance EV range.
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1. Introduction

Vehicles with electric powertrains, encompassing both
fully electric vehicles (EVs) and hybrid electric vehicles
(HEVs), play a pivotal role in transforming the transporta-
tion sector towards sustainable and environmentally friend-
ly solutions. The increasing availability of public charging
stations, enhanced amenities for electric vehicle owners,
and financial incentives such as purchase subsidies serve as
powerful motivators for choosing an electric vehicle and
offer additional encouragement to undecided potential buy-
ers [2, 4, 13]. EVs contribute to the reduction of greenhouse
gas emissions and the improvement of energy efficiency.
All vehicles equipped with an electric powertrain possess
the capability to recover Kinetic energy during braking. The
Regenerative Braking System (RBS) converts kinetic ener-
gy into electrical energy via an electric motor operating in
generator mode. This energy is then transferred to the bat-
tery and can be subsequently reused to propel the vehicle or
power onboard systems. For purely electric vehicles, regen-
eration directly extends range and enhances energy effi-
ciency, forming an integral part of their propulsion system.
Conversely, in hybrid vehicles, where the electric drive
interacts with an internal combustion engine, the energy
regeneration system improves overall energy efficiency by
reducing fuel consumption and exhaust emissions. With
growing interest in electromobility, research into optimiz-
ing regeneration processes is becoming increasingly vital,
particularly in the context of urban driving, where frequent
stops and speed changes create unique opportunities for
energy recovery.

Research on energy recuperation in electric vehicles en-
compasses a wide range of theoretical and experimental
approaches, from integrating regenerative braking systems
with friction brakes to designing advanced strategies for

managing and controlling recovered energy. Control strate-
gies for kinetic energy recovery are developed to maximize
the efficiency of regenerative braking in vehicles with elec-
tric powertrains [3]. Previously published studies primarily
focus on developing and presenting optimization or predic-
tive algorithms, all based on specific braking process pa-
rameters. Optimization algorithms are used to maximize
energy recovery through mathematical models. For exam-
ple, in [25], a fuzzy logic-based control strategy with genet-
ic algorithms was presented. The developed algorithm was
projected to increase braking energy recovery efficiency by
10% and extend EV range by 8% in the urban cycle. Simi-
larly, torque optimization, as described in [7], improved the
recovery coefficient by 3.35% in WLTC tests by minimiz-
ing energy losses. Neural networks, applied in [14], en-
hanced the adaptability of RBS to varying road conditions,
increasing recovered energy by 7% compared to classic
PID controllers. However, studies [12, 21] indicate that the
computational complexity of these methods limits their
practical application in vehicles.

Predictive algorithms are used to forecast braking de-
mand and optimize regenerative force. These algorithms
draw on both real-time driving data (such as route topogra-
phy from GPS, speed, acceleration, and brake pedal posi-
tion) and historical data. This enables the recuperation sys-
tem to adapt its operation to current road conditions, there-
by optimizing energy recovery across various scenarios.
For instance, as demonstrated in [23], an energy manage-
ment strategy based on Model Predictive Control (MPC)
boosted energy recovery by 5% in urban environments by
precisely adapting to speed profiles. Study [16] utilized
Artificial Neural Networks (ANNSs) and fuzzy controllers to
calculate recovered braking energy based on battery state of
charge and braking demand. Linear programming was then
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applied to optimize the regenerative force, leading to
a 25.7% increase in vehicle range. Due to their ability to
better account for variable conditions and uncertainties
(such as driver behaviour and route topography), predictive
algorithms in EV regenerative braking systems surpass
classical optimization algorithms in effectiveness. This
advantage enables continuous, real-time recalibration of
recuperation control, resulting in more accurate estimations
of energy recovery efficiency and, consequently, improved
range and reduced energy consumption.

The efficiency of recuperation systems in electric vehi-
cles is highly dependent on operating conditions. In urban
environments, characterized by dynamic driving with fre-
quent acceleration and braking cycles, the effectiveness of
the Kinetic energy recovery system can be substantial. It is
estimated that under such conditions, energy recovered
during braking can account for 20% to 40% of the energy
consumed for vehicle propulsion [19]. Similar conclusions
were presented in [9]. Furthermore, [11] demonstrated that
in urban settings, recuperation can be responsible for 15—
25% of the vehicle's total energy demand, depending on
driving dynamics and road infrastructure.

In studies [5, 18, 24], the authors emphasize the signifi-
cance of frequent braking in urban traffic, which results
from the high number of intersections and traffic lights,
thus favouring greater energy recovery. Within the context
of HEVs, studies such as those presented in [15, 22] indi-
cate that recuperation in urban driving can significantly
reduce fuel consumption by increasing the electric power-
train's contribution to the overall driving cycle. However,
the majority of existing research relies on standard driving
cycles, such as WLTP or NEDC, which do not fully reflect
the variability of real-world urban conditions. This limita-
tion restricts their practical application in powertrain system
design. This applies to both electric vehicles and those
equipped with internal combustion engines [26, 27, 28].

Despite extensive research on energy recuperation in
electric vehicles, a notable gap persists in the literature
concerning a detailed analysis of how specific braking
parameters — such as the number of braking events, average
braking speed, deceleration, or maximum braking force —
influence energy recovery under real-world urban driving
conditions. Most prior studies focus on standardized driving
cycles, which fail to account for the complexities of urban
traffic, including varying congestion levels, the number of
intersections, or changes in terrain elevation. Furthermore,
attempts to integrate data from real-world drives with ad-
vanced simulations are infrequent, yet such an approach
could yield more realistic and applicable conclusions for
designing recuperation systems in both EVs and HEVs.
This study addresses this gap by analysing the impact of
braking parameters on energy recovery across 60 real-world
urban driving events, utilizing simulations in AVL Cruise
software.

Based on the literature review and the identified re-
search gap, the following hypotheses have been formulated:
— Hypothesis 1: The number of braking events (Npm) is

positively correlated with the amount of recovered en-

ergy (Ereg) in urban driving conditions for both EVs and

HEVs.

— Hypothesis 2: Braking parameters, such as average
braking velocity (vy ), average deceleration (ds), and
maximum braking force (Fn_max), have a varied impact
on energy recovery, with their significance depending
on the specific driving pattern.

— Hypothesis 3: Driving patterns characterized by fre-
quent, moderate braking (e.g., in heavy urban traffic)
exhibit higher energy recovery efficiency compared to
patterns with less frequent but more intense braking.
This is particularly relevant for HEVSs in the context of
fuel consumption reduction.

The study's methodology employs a two-stage ap-
proach: (1) data acquisition from real-world urban driving
and (2) simulations conducted in AVL Cruise software.
This dual approach allows for capturing authentic driving
patterns that are challenging to replicate in standardized
laboratory cycles, while simultaneously enabling a precise
analysis of braking parameter impact on energy recovery
under controlled simulation conditions. A single driver was
used to eliminate driving style variability, thereby isolating
the influence of the studied parameters. The application of
correlation analysis and K-Means clustering then aids in
identifying key relationships and patterns, which are vital
for developing more effective recuperation systems for both
EVs and HEVs.

2. Methods

2.1. Real-world data acquisition
Research into energy recovered during braking was

conducted in two stages. First, the kinematic parameters of
an electric vehicle were recorded under real-world urban
traffic conditions. The resulting speed profiles then served
as input data for the simulation software. In the second
stage, simulation studies were performed using AVL Cruise
software, where a vehicle model corresponding to the real
one was developed. The data from these simulations were
then subjected to statistical analysis.

Real-world tests were conducted on five selected urban
road sections, each approximately 5 km long, characterized
by varying traffic densities and road conditions. A total of
60 drives were completed, encompassing both city out-
bound roads and urban routes with different levels of con-
gestion. Some routes were outbound roads, where traffic
was relatively light, and the vehicle moved smoothly with
few stops. The remaining routes involved driving through
the city center, where traffic density was higher, necessitat-
ing more frequent stops and speed changes. Drives were
carried out at two times of day: around midday, between the
morning and afternoon rush hours, and during the afternoon
rush hour itself.

The routes varied in the number of signalized intersec-
tions, pedestrian crossings, and permissible speeds. The
investigated routes included:

— city outbound road (70 km/h speed limit) featured 3
signalized intersections, 4 marked pedestrian crossings,
and one roundabout

— city outbound road (50 km/h speed limit) characterized
by a varied elevation profile with an altitude change ex-
ceeding 60 m between its highest and lowest points.
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This route included 8 intersections (5 signalized) and 4

marked pedestrian crossings

— city center routes;

1) the first city center route, known for heavy traffic
and a varied elevation profile, comprised 9 signal-
ized intersections, 5 marked pedestrian crossings,
and 3 roundabouts

2) the second city center route included 15 intersec-
tions (12 signalized) and 3 marked pedestrian cross-
ings;

— residential area route encompassed 29 intersections (4
signalized) and 9 marked pedestrian crossings. It fea-
tured significant speed restrictions (in places down to 20
km/h) typical of residential roads, along with speed re-
ductions enforced by speed bumps.

The selection of five routes ensures that the study re-
flects typical urban driving scenarios. This prevents the
results from being limited to specific, atypical situations,
allowing them to be generalized to the real-world usage of
electric vehicles in urban environments.

The test vehicle used was a Hyundai Kona electric.
A Kistler™ type GPS Data Logger was employed to meas-
ure vehicle motion parameters, recording data such as travel
time, instantaneous velocity, instantaneous longitudinal
acceleration, distance traveled, and instantaneous position
(10 Hz sampling frequency, GPS position accuracy < 2.5
m). The collected data were used to create velocity profiles
characteristic of each route. All drives were performed by
a single driver. Examples of the recorded velocity profiles
as a function of time are presented in Fig. 1.
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Fig. 1. Representative speed profiles from the investigated routes (a)
midday, (b) peak hours

2.2. AVL Cruise modeling and simulation

AVL CRUISE is an advanced analytical tool designed
for detailed modeling of both mechanical and regenerative
systems. This capability allows for the optimization of

braking strategies concerning energy efficiency, safety, and
driving comfort. The software serves as a sophisticated
instrument for analyzing vehicle dynamics and optimizing
its powertrain and braking systems, with particular empha-
sis on the energy recuperation system. The developed vehi-
cle model facilitates advanced analyses of the kinetic ener-
gy recovery process via the recuperation system, while
simultaneously accounting for the mechanical and thermal
aspects of the braking system's operation. A schematic
representation of the electric vehicle model is provided in
Fig. 2.
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Fig. 2. Electric vehicle model in AVL Cruise

Table 1. Selected technical parameters of the electric vehicle

Electric motor Motor type Permanent Magnet
Synchronous Motor
(PMSM)
Maximum motor 100 kW
power
Maximum torque 395 Nm
Battery Type Lithium-ion
Energy capacity 39.2 kWh
Vehicle dimensions Length 4180 mm
and mass Width 1800 mm
Height 1570 mm
Wheelbase 2600 mm
Curb weight 1535 kg
Payload capacity 150 kg

The electric vehicle braking system in AVL Cruise
comprises two primary components:

— mechanical braking system, which consists of disc
brakes actuated by a hydraulic system, which includes
a pump, pressure lines, and wheel cylinders located at
each wheel;

— kinetic energy recuperation system, that incorporates an
electric machine operating in generator mode, convert-
ing the vehicle's kinetic energy into electrical energy,
which is then directed via an inverter to the battery.
These two systems operate concurrently, with their in-

teraction dictated by braking torque control algorithms.

The electric vehicle model used in the simulation stud-
ies replicated the parameters of the actual Hyundai Kona
electric. Table 1 presents selected technical parameters of
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this electric vehicle. For each simulation performed, the
initial battery state of charge was set to 75%.

2.3. Data analysis

The data collected were analysed using Statistica soft-
ware. Pearson correlation analysis was applied to assess the
relationships between braking parameters — such as the
number of braking events (nn.m), average braking speed
(Vhsr), average braking deceleration (dy), and maximum
braking force (F, max), and the amount of recovered energy
(Ereg). Additionally, the K-Means clustering method was
used to group drives into four distinct clusters. This allowed
for the identification of driving patterns that influence recu-
peration efficiency. The results were validated using
ANOVA and 10-fold cross-validation, ensuring the robust-
ness and reliability of the obtained data.

3. Results

3.1. Analysis of energy recovered in selected test routes

The analysis is based on data obtained from 60 real-
world trips and their corresponding AVL Cruise simula-
tions. The influence of key braking parameters — such as the
number of braking events, average braking speed, decelera-
tion, and maximum braking force — on the amount of ener-
gy recovered (Erg) is examined. The results are organized
into two subsections: Subsection 3.1 details the energy
recovery characteristics across the test routes, including
statistical correlations between braking parameters and
recovered energy. Subsection 3.2 applies K-Means cluster-
ing to identify distinct driving patterns and their impact on
recuperation efficiency, highlighting optimal conditions for
maximizing energy recovery. These findings provide in-
sights into the effectiveness of regenerative braking systems
in diverse urban traffic scenarios.

Energy recuperation in electric vehicles is most effec-
tive in urban traffic conditions, where the number of brak-
ing events is highest. Optimizing recuperation in such envi-
ronments can significantly boost vehicle energy efficiency.
Increasing the initial braking velocity and braking force
within moderate limits can favorably impact the amount of
energy recovered. Therefore, the goal should be to design
recuperation systems that enable maximum energy recovery
across a wide range of traffic conditions. Urban driving,
while leading to higher energy consumption due to frequent
speed changes, also offers the greatest potential for energy
recovery during braking.

Simulation studies utilized velocity profiles from 60 ur-
ban driving trips, each approximately 5 km in length. The
routes were diverse, and data collection took place on
weekdays. Figure 3 and Fig. 4 present the number of brak-
ing events recorded on the test routes.

An average of 77 braking events was logged per trip.
The highest recorded instance was 158 braking events in
a single trip, translating to 31 braking events per kilometre.
Figure 5 presents the distribution of total energy consump-
tion (E) across the analysed trips.

The analysed trips showed an average energy consump-
tion of 2772.6 kJ (0.77 kwh), with values ranging from
1292.28 kJ (0.36 kWh). On a per-kilometre basis, the vehi-
cle consumed an average of 554.52 kJ (0.15 kWh). The
peak energy consumption, approximately 3597.24 kJ (1

kWh), occurred during a rush-hour trip through the city
centre. This particular instance was characterized by heavy
traffic and an average driving speed of 16.36 km/h. Figure
6 presents the distribution of recovered energy values (Ereg)
for all trips.
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Fig. 3. Distribution of braking events (nn.m) in test routes
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On average, 595.42 kJ (0.17 kWh) of energy was recov-
ered per trip. The range of recovered energy values was
710.71 kJ. The highest recorded value of recuperated ener-
gy during braking in the analysed trips was 1026.64 kJ
(0.29 kwh). This particular trip also showed the highest
energy consumption.

The number of braking events in urban driving reflects
traffic dynamics; intense traffic and frequent stops lead to
greater energy recovery. In areas with numerous stops (e.g.,
city centres), higher recuperation efficiency can be ex-
pected. It is evident that the amount of recovered energy
increases with the number of braking events. In the ana-
lysed trips, these parameters exhibit a linear relationship.
A correlation coefficient (r) equal to 0.9 indicates a very
strong positive correlation between the number of braking
events and the energy recovered (Fig. 7).
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Fig. 7. Scatter plots of total energy recovered during braking and number
of braking events (a), and number of braking events per 1 km (b) in a trip

The kinetic energy a vehicle possesses — and can poten-
tially recover — is directly tied to its mass and initial braking
velocity. Consequently, even minor increases in velocity
lead to a significant rise in the energy available for recuper-
ation. Deceleration reflects the dynamics of the braking
process — that is, the rate at which vehicle velocity changes.
Intense braking with high deceleration leads to a faster
conversion of kinetic energy, requiring an appropriate re-
sponse from the recuperation system to effectively recover
the energy.

For each recorded braking manoeuvre, the initial brak-
ing velocity and deceleration were estimated. An average of
these values was then calculated for each individual trip.

Figure 8 presents the distribution of the average initial
braking velocity (vyng), and Fig. 9 presents the average de-
celeration (dg) across the analysed trips. Figure 10 shows
scatter plots of the total energy recovered during braking,
along with the average braking velocity and average decel-
eration values.
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For the analysed trips, the average initial braking veloci-
ty was 18.24 km/h, with an average deceleration of 1.42
m/s®. Analysis of the averaged deceleration and initial ve-
locity values for each trip indicated only a weak influence
of these parameters on the total recovered energy. The trend
line exhibits a slight positive slope, suggesting that in-
creased average braking velocity could lead to a minor rise
in recuperated energy. This is largely attributable to the fact
that higher initial velocity inherently offers more kinetic
energy for recovery. However, average braking decelera-
tion shows a stronger correlation with the amount of recov-
ered energy than the average initial braking velocity.

For each braking manoeuvre during the trips, the brak-
ing force was estimated. Figure 11 presents the distribution
of averaged maximum braking force (Fn ma) Values for
each completed trip.

Braking force is a critical factor in the recuperation pro-
cess as it dictates how effectively a vehicle's Kinetic energy
can be converted into electrical energy. The average brak-
ing force for the analysed trips was 1749.07 N. The aver-
aged braking force values per trip show a moderate correla-
tion with the energy recovered. An increase in braking
force allows for a greater amount of energy to be recovered
during electric vehicle braking (Fig. 12).
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Urban conditions offer substantial potential for effective
recuperation, with braking force and dynamics being key
factors influencing energy recovery. Based on averaged
values for initial braking velocity, deceleration, and braking
force, the foregoing analyses aim to elucidate the general

influence of these parameters on the total energy recuperat-
ed during a trip.

The obtained results indicate that initial braking velocity
influences the amount of kinetic energy available for recov-
ery. A higher initial velocity during a braking manoeuvre
presents an increased potential for energy recovery; howev-
er, the correlation observed at the trip level is weak, which
may be attributed to the significant variability in prevailing
road conditions and the diversity of braking scenarios en-
countered. The deceleration during braking is associated
with the dynamic characteristics of the braking event.
A moderate correlation indicates that more aggressive brak-
ing manoeuvres may result in enhanced recuperation effi-
ciency. Simultaneously, braking force, being directly pro-
portional to the kinetic energy conversion into electrical
energy, exhibits a moderate reliance on the overall energy
recovered throughout a given trip.

3.2. K-Means clustering of routes based on recuperation
patterns

Another objective of this research was to identify energy
recovery patterns during braking in electric vehicles and to
segment routes based on key braking parameters using the K-
Means algorithm. This algorithm partitions data into k clus-
ters by minimizing the sum of squared distances between
observations and centroids. The dependent variable was the
total energy recovered during braking per trip (Eyeg).

The following parameters were utilized in the study:

— number of braking events in trip (Nham)

— number of braking events per kilometer (Nhamikm)

— average initial braking velocity (v ¢) in trip

— average deceleration (dg) in every trip

— averaged braking force (Fn ma) values for each com-
pleted trip.

To ensure data comparability and mitigate issues arising
from differing units and value ranges, all data underwent
standardization, scaling them to a mean of 0 and a standard
deviation of 1. This standardization was crucial because the
K-Means algorithm utilizes a Euclidean metric, where vari-
ables with larger values could otherwise dominate the anal-
ysis and skew the results.

The initial centroids were established using a method of
maximizing the distance between them, which promotes
a better separation of natural clusters. The optimal number
of clusters (k = 4) was determined by analysing the "elbow
method" and the silhouette coefficient. Each trip, represent-
ed as a feature vector, was assigned to its nearest centroid
using Euclidean distance. Subsequently, the centroids were
updated as the mean of the vectors assigned to their respec-
tive clusters. This iterative process continued until conver-
gence was achieved (i.e., minimal changes in centroid posi-
tions). All computations were performed using Statistica
software.

The data from 60 trips were divided into four distinct
groups (Fig. 13), suggesting the presence of four clear be-
havioural patterns related to braking parameters and the
energy recovery system. Trips within each cluster (C) ex-
hibit comparable characteristics, specifically regarding the
number of braking events, braking events per kilometre,
average initial velocity, average deceleration, and average
maximum braking force recorded for each trip.
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Verification of the four-cluster division's capacity to ac-
curately represent significant differences in the analyzed
variables' behavior was achieved through an Analysis of
Variance (ANOVA), performed on all quantitative varia-
bles (Table 2). A significance level of 0.05 was adopted.
The effect size was calculated based on the F-statistic and
the sums of squares (SS).

The ANOVA results demonstrated that the differences
between clusters are statistically significant (p < 0.001 for
most variables). The K-Means segmentation is thereby
confirmed to effectively differentiate trips based on braking
and energy recovery parameters. The exceptionally high F-
statistic values observed for the chosen parameters under-
score their critical role in distinguishing trips by their ener-
gy recuperation characteristics.

Table 2. ANOVA test results

Parameter Between- Within- F-statistic | p-value
Group SS Group SS
Ereg 37.86 21.14 3342 0.0000
Nham 40.11 18.89 39.64 0.0000
Nham/1 KM 39.58 19.42 38.05 0.0000
Vh s 26.85 32.15 15.59 0.0000
dsr 31.28 27.72 21.06 0.0000
Fh max 42.14 16.86 46.67 0.0000

To verify the stability of the results, 10-fold cross-
validation was applied, and outliers that could distort the
clustering outcomes were removed. The final error in the
training sample was 0.371, indicating a relatively good
quality of dependent variable assignment to the clusters.

The subsequent stage of analysis involved evaluating
the energy recovered within the four clusters generated by
the K-Means algorithm. This analysis specifically consid-
ered key braking process parameters: average braking ve-
locity, average braking deceleration, and maximum braking
force. The study aimed to identify the correlations between
these variables and the total recovered energy. Figure 14
visually represents the E4 values in relation to these pa-
rameters across the 4 clusters.

Cluster 1 (C1) comprises trips with the lowest energy
recovery, ranging from 315.93 to 514.54 kJ. These trips are
characterized by a low average braking velocity (11.84—
16.46 km/h), slight deceleration (1.12—-1.48 m/s?), and mod-
erate braking force (2227.78-4192.34 N). The low number
of braking events (2676 per trip) suggests a smooth driv-
ing style. This cluster likely represents trips conducted

under lower traffic density, which consequently limits the
effectiveness of energy recuperation.

In Cluster 2 (C2), the recovered energy ranges from
318.50 to 822.03 kJ, indicating greater recovery efficiency
than in Cluster 1. The average braking velocity falls be-
tween 15.83 and 23.82 km/h, with average deceleration
ranging from 1.24 to 1.64 m/s’. Braking force values
(2624.99-6391.37 N) suggest more dynamic braking ma-
neuvers. These trips are characterized by more frequent
stops (30-87 braking events). This cluster likely includes
both midday trips and those conducted under higher traffic
density.
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Fig. 14. Clustering of E.q in 4 clusters based on average braking velocity
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Cluster 3 (C3) exhibits significantly higher energy recov-
ery, ranging from 450.80 to 752.47 kJ, compared to the first
two clusters. Braking events in this cluster are more intense,
with an average velocity of 14.05-20.56 km/h and greater
deceleration (1.3-1.67 m/s?). The maximum braking force
values are the highest among all clusters, recorded between
5432.10 and 8737.75 N. The high frequency of braking
events (68-98 per trip) suggests driving conditions typical of
heightened urban traffic during the afternoon rush hour.

Cluster 4 (C4) exhibits the highest energy recovery,
ranging from 548.51 to 1026.64 kJ. Despite braking veloci-
ty (13.15-22.08 km/h) similar to those in C2 and C3, the
critical factor is the very high number of braking events
(84-158 per trip). Braking in this cluster is frequent but not
excessively intense, as indicated by maximum braking
force values between 2612.34 and 6280.18 N. These trips
likely occurred under conditions of the highest traffic densi-
ty, necessitating frequent stops and accelerations.

In summary, the highest energy recovery was observed
under conditions of intensive urban traffic, characterized by
frequent, though not necessarily abrupt, braking (C4). Con-
versely, the lowest recovered energy values were recorded
during trips defined by smooth driving with infrequent brak-
ing (C1), which corresponds to off-peak driving conditions.

To further analyse the efficiency of the recuperation
system in electric vehicles under varying urban driving
conditions, the percentage recuperation efficiency (1) Was
evaluated for each of the four clusters identified by the
K-Means method. This efficiency was defined as the ratio
of energy recovered (E,) to the total energy consumed per
trip (E.), expressed as a percentage, according to the fol-
lowing formula:

Nreg [%] = (Ereg) -100 (1)

Ec

The recuperation system's effectiveness in transforming
the vehicle's kinetic energy into electrical energy across
varying urban driving conditions can be assessed using this
metric. The percentage energy recovery efficiency (nyeg) for
the four identified clusters is presented in Fig. 15.
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Fig. 15. Percentage of energy recovery efficiency (n.g) by cluster

A direct relationship between energy recovery efficiency
and the number of braking events is evident, notably within
C4, where the combination of frequent, albeit moderate,
braking in high-traffic scenarios optimizes recuperation. In
contrast, C1 and C3, characterized by fewer braking events,
demonstrate reduced efficiency. This diminished efficiency
in C3, despite more intense braking, may suggest the occur-
rence of energy dissipation during abrupt manoeuvres.

The impact of initial braking velocity and maximum
braking force on overall energy recovery efficiency is nota-
bly constrained. This observation implies that traffic dy-
namics, rather than the intensity of isolated braking events,
constitute the predominant factor. Such findings are instru-
mental in guiding the further optimization of recuperation
systems, especially in the development of control algo-
rithms designed for the specificities of urban driving.

4. Discussion

This study significantly contributes to understanding the
dynamics of energy recovery in electric vehicles under
urban driving conditions, focusing on the relationships
between braking parameters and recuperation efficiency.
A key finding is the strong correlation between the number
of braking events and the energy recovered, underscoring
that urban traffic with frequent stops is an optimal envi-
ronment for recuperation. K-Means cluster analysis re-
vealed four driving patterns, with Cluster C4 demonstrating
the highest recuperation efficiency (23.16%). This cluster
was characterized by the highest number of braking events
(84-158) and moderate dynamics within intensive traffic.
Conversely, Cluster C1, marked by smooth driving and
a limited number of braking events (26-76), exhibited the
lowest efficiency (18.45%). This highlights the crucial role
of braking frequency in the recuperation process.

The presented results align with the fundamental physi-
cal principles governing recuperation systems. This align-
ment is further corroborated by existing literature [1, 6, 17],
which concludes that a higher frequency of braking cycles
translates to more efficient recovery of a vehicle's kinetic
energy during deceleration.

Comparing our findings with existing literature, the av-
erage recuperation efficiency of 21.47% falls within the
typical range for electric vehicles operating in urban envi-
ronments, thereby confirming the robustness of our meth-
odology [8, 10, 20]. However, this study's detailed segmen-
tation of routes using K-Means clustering and the analysis
of varied speed profiles differentiate it from standard re-
search based on predefined cycles like WLTP. This ap-
proach offers deeper insights into the impact of real-world
traffic conditions. Notably, Cluster C3 exhibited lower
efficiency (18.52%) than Cluster C4, despite a substantial
number of braking events (68-98) and significant braking
forces (5432.10-8737.75 N). This discrepancy may suggest
energy dissipation due to abrupt braking, wherein kinetic
energy is converted into heat within the mechanical braking
system.

The presented results have practical implications for
both electric powertrain designers and electric vehicle us-
ers. For engineers designing recuperation systems, it is
recommended to focus on maximizing the efficiency of
regenerative braking under frequent, low-intensity braking
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conditions, such as those observed in Cluster C4. This may
involve adjusting braking system control algorithms to priori-
tize recuperation in such scenarios. From the perspective of
drivers, this study suggests that anticipating situations requir-
ing stops and employing gentle braking can contribute to
increased energy recovery efficiency, thereby extending
vehicle range. Such driving strategies may be particularly
beneficial in urban driving conditions, where numerous stops
are necessitated by traffic infrastructure and density.

Several limitations warrant consideration within this
study. Primarily, the exclusive use of a single driver for all
trips constrained the diversity of driving styles, which, in
turn, may limit the broader generalizability of the findings.
It is acknowledged that variations in driving technique
could potentially influence both braking dynamics and
energy dissipation. Secondly, the AVL Cruise simulations
were performed under consistent conditions of battery state
of charge (SOC = 75%) and ambient temperature. This does
not fully represent the complete range of real-world operat-
ing environments, given that a reduced SOC or colder tem-
peratures can adversely affect battery performance. Finally,
the analysis was confined to the Hyundai Kona Electric
model, thus precluding a comprehensive assessment of
design differences, such as vehicle mass or drivetrain type,
across other electric vehicle models.

This study corroborates that frequent, moderate braking
within high-density urban traffic optimizes energy recovery
in electric vehicles. These findings have the potential to
propel the development of more efficient recuperation sys-
tems and encourage driving techniques that extend vehicle
range, thereby contributing to the advancement of electro-
mobility. Continued research, encompassing a wider array
of variables, will facilitate a more precise adaptation of this
technology to authentic operational conditions.

5. Conclusions
This study, which investigated the influence of braking
parameters on energy recovery in electric vehicles under

urban driving conditions, confirmed our hypotheses and led

to the following conclusions:

— Statistical analysis revealed a very high correlation (r =
0.9) between the number of braking events and the
amount of energy recovered, confirming the crucial role
of braking frequency in the recuperation process.

— The application of the K-Means clustering method iden-
tified four distinct regenerative braking patterns. The
highest recuperation efficiency (23.16%) was achieved
in the cluster characterized by the greatest number of
braking events (84-158) and moderate braking force,
whereas the lowest efficiency (18.45%) was observed in
the cluster with fewer braking events (26—76) and a high
average trip velocity.

— The average recuperation efficiency observed under the
studied urban conditions was 21.47%, which aligns with
the typical operational range observed for electric vehi-
cles.

It can therefore be concluded that the key factor in max-
imizing recuperation is the frequency of braking events,
along with their moderate intensity, which enables the effi-
cient conversion of kinetic energy into electrical energy.

The findings of this study have broad applicability, ex-
tending beyond fully electric vehicles to include hybrid
electric vehicles, which also utilize recuperation systems
for energy recovery during braking. The study's key in-
sights, such as the significance of braking frequency and
characteristics for recuperation efficiency, are universal and
can be directly applied to HEVs. Optimizing braking strate-
gies based on the patterns identified in Cluster C4 could
enhance energy recovery, thereby improving overall vehicle
efficiency. In the context of hybrid vehicles, this could
directly translate to reduced fuel consumption.

In conclusion, this study offers a significant contribution
not only to the progression of electric drivetrain technology
but also by providing universal insights directly applicable
to hybrid vehicles, thereby fostering enhanced energy effi-
ciency and promoting sustainable development within the
automotive sector.

Nomenclature

ds average braking deceleration Nnam/1 KM number of braking events per 1 kilometr

E. total energy consumption in test route Treg percentage recuperation efficiency

Ereg total regenerated energy in test route r Pearson correlation coefficient

EV electric vehicle RBS regenerative braking systems

F_max average maximum braking force SOC state of charge

GPS global positioning system Vhsr average braking velocity

HEV hybrid electric vehicle WLTC  Worldwide Harmonised Light Vehicles Test
NEDC  New European Driving Cycle Procedure

Nham number of braking events
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