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ARTICLE INFO  Electric vehicles offer a sustainable alternative to internal combustion engine vehicles, significantly reducing 

emissions and improving energy efficiency. A key feature is the regenerative braking system, which recovers 

kinetic energy during braking. This study examines how braking parameters affect energy recovery in EVs under 
urban conditions, combining real-world data with simulation. The research involved two stages: data collection 

from 60 urban trips using a Hyundai Kona Electric, followed by AVL Cruise simulations. Statistical analysis 

(correlation and K-Means clustering) assessed the relationship between braking parameters (number of events, 
average braking speed, deceleration, maximum braking force) and recovered energy. Results showed a strong 

correlation (r = 0.9) between the number of braking events and recovered energy, highlighting the importance of 

frequent urban braking. Clustering identified four driving patterns. Cluster C4, with the highest number of 
braking events (84–158) and moderate intensity, achieved the greatest energy recovery efficiency (23.16%). 

Cluster C1, with fewer events (26–76) and smoother driving, showed the lowest efficiency (18.45%). The 

average efficiency across all trips was 21.47%, consistent with the literature. Findings suggest that frequent, 
moderate braking in dense urban traffic optimizes energy recovery. The study offers practical insights for 

designing more efficient regenerative systems and promoting driving techniques that enhance EV range. 
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1. Introduction 
Vehicles with electric powertrains, encompassing both 

fully electric vehicles (EVs) and hybrid electric vehicles 

(HEVs), play a pivotal role in transforming the transporta-

tion sector towards sustainable and environmentally friend-

ly solutions. The increasing availability of public charging 

stations, enhanced amenities for electric vehicle owners, 

and financial incentives such as purchase subsidies serve as 

powerful motivators for choosing an electric vehicle and 

offer additional encouragement to undecided potential buy-

ers [2, 4, 13]. EVs contribute to the reduction of greenhouse 

gas emissions and the improvement of energy efficiency. 

All vehicles equipped with an electric powertrain possess 

the capability to recover kinetic energy during braking. The 

Regenerative Braking System (RBS) converts kinetic ener-

gy into electrical energy via an electric motor operating in 

generator mode. This energy is then transferred to the bat-

tery and can be subsequently reused to propel the vehicle or 

power onboard systems. For purely electric vehicles, regen-

eration directly extends range and enhances energy effi-

ciency, forming an integral part of their propulsion system. 

Conversely, in hybrid vehicles, where the electric drive 

interacts with an internal combustion engine, the energy 

regeneration system improves overall energy efficiency by 

reducing fuel consumption and exhaust emissions. With 

growing interest in electromobility, research into optimiz-

ing regeneration processes is becoming increasingly vital, 

particularly in the context of urban driving, where frequent 

stops and speed changes create unique opportunities for 

energy recovery.  

Research on energy recuperation in electric vehicles en-

compasses a wide range of theoretical and experimental 

approaches, from integrating regenerative braking systems 

with friction brakes to designing advanced strategies for 

managing and controlling recovered energy. Control strate-

gies for kinetic energy recovery are developed to maximize 

the efficiency of regenerative braking in vehicles with elec-

tric powertrains [3]. Previously published studies primarily 

focus on developing and presenting optimization or predic-

tive algorithms, all based on specific braking process pa-

rameters. Optimization algorithms are used to maximize 

energy recovery through mathematical models. For exam-

ple, in [25], a fuzzy logic-based control strategy with genet-

ic algorithms was presented. The developed algorithm was 

projected to increase braking energy recovery efficiency by 

10% and extend EV range by 8% in the urban cycle. Simi-

larly, torque optimization, as described in [7], improved the 

recovery coefficient by 3.35% in WLTC tests by minimiz-

ing energy losses. Neural networks, applied in [14], en-

hanced the adaptability of RBS to varying road conditions, 

increasing recovered energy by 7% compared to classic 

PID controllers. However, studies [12, 21] indicate that the 

computational complexity of these methods limits their 

practical application in vehicles.  

Predictive algorithms are used to forecast braking de-

mand and optimize regenerative force. These algorithms 

draw on both real-time driving data (such as route topogra-

phy from GPS, speed, acceleration, and brake pedal posi-

tion) and historical data. This enables the recuperation sys-

tem to adapt its operation to current road conditions, there-

by optimizing energy recovery across various scenarios. 

For instance, as demonstrated in [23], an energy manage-

ment strategy based on Model Predictive Control (MPC) 

boosted energy recovery by 5% in urban environments by 

precisely adapting to speed profiles. Study [16] utilized 

Artificial Neural Networks (ANNs) and fuzzy controllers to 

calculate recovered braking energy based on battery state of 

charge and braking demand. Linear programming was then 
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applied to optimize the regenerative force, leading to  

a 25.7% increase in vehicle range. Due to their ability to 

better account for variable conditions and uncertainties 

(such as driver behaviour and route topography), predictive 

algorithms in EV regenerative braking systems surpass 

classical optimization algorithms in effectiveness. This 

advantage enables continuous, real-time recalibration of 

recuperation control, resulting in more accurate estimations 

of energy recovery efficiency and, consequently, improved 

range and reduced energy consumption.  

The efficiency of recuperation systems in electric vehi-

cles is highly dependent on operating conditions. In urban 

environments, characterized by dynamic driving with fre-

quent acceleration and braking cycles, the effectiveness of 

the kinetic energy recovery system can be substantial. It is 

estimated that under such conditions, energy recovered 

during braking can account for 20% to 40% of the energy 

consumed for vehicle propulsion [19]. Similar conclusions 

were presented in [9]. Furthermore, [11] demonstrated that 

in urban settings, recuperation can be responsible for 15–

25% of the vehicle's total energy demand, depending on 

driving dynamics and road infrastructure.  

In studies [5, 18, 24], the authors emphasize the signifi-

cance of frequent braking in urban traffic, which results 

from the high number of intersections and traffic lights, 

thus favouring greater energy recovery. Within the context 

of HEVs, studies such as those presented in [15, 22] indi-

cate that recuperation in urban driving can significantly 

reduce fuel consumption by increasing the electric power-

train's contribution to the overall driving cycle. However, 

the majority of existing research relies on standard driving 

cycles, such as WLTP or NEDC, which do not fully reflect 

the variability of real-world urban conditions. This limita-

tion restricts their practical application in powertrain system 

design. This applies to both electric vehicles and those 

equipped with internal combustion engines [26, 27, 28]. 

Despite extensive research on energy recuperation in 

electric vehicles, a notable gap persists in the literature 

concerning a detailed analysis of how specific braking 

parameters – such as the number of braking events, average 

braking speed, deceleration, or maximum braking force – 

influence energy recovery under real-world urban driving 

conditions. Most prior studies focus on standardized driving 

cycles, which fail to account for the complexities of urban 

traffic, including varying congestion levels, the number of 

intersections, or changes in terrain elevation. Furthermore, 

attempts to integrate data from real-world drives with ad-

vanced simulations are infrequent, yet such an approach 

could yield more realistic and applicable conclusions for 

designing recuperation systems in both EVs and HEVs. 

This study addresses this gap by analysing the impact of 

braking parameters on energy recovery across 60 real-world 

urban driving events, utilizing simulations in AVL Cruise 

software.  

Based on the literature review and the identified re-

search gap, the following hypotheses have been formulated: 

 Hypothesis 1: The number of braking events (nham) is 

positively correlated with the amount of recovered en-

ergy (Ereg) in urban driving conditions for both EVs and 

HEVs. 

 Hypothesis 2: Braking parameters, such as average 

braking velocity (vh_sr), average deceleration (dsr), and 

maximum braking force (Fh_max), have a varied impact 

on energy recovery, with their significance depending 

on the specific driving pattern. 

 Hypothesis 3: Driving patterns characterized by fre-

quent, moderate braking (e.g., in heavy urban traffic) 

exhibit higher energy recovery efficiency compared to 

patterns with less frequent but more intense braking. 

This is particularly relevant for HEVs in the context of 

fuel consumption reduction. 

The study's methodology employs a two-stage ap-

proach: (1) data acquisition from real-world urban driving 

and (2) simulations conducted in AVL Cruise software. 

This dual approach allows for capturing authentic driving 

patterns that are challenging to replicate in standardized 

laboratory cycles, while simultaneously enabling a precise 

analysis of braking parameter impact on energy recovery 

under controlled simulation conditions. A single driver was 

used to eliminate driving style variability, thereby isolating 

the influence of the studied parameters. The application of 

correlation analysis and K-Means clustering then aids in 

identifying key relationships and patterns, which are vital 

for developing more effective recuperation systems for both 

EVs and HEVs. 

2. Methods 

2.1. Real-world data acquisition 

Research into energy recovered during braking was 

conducted in two stages. First, the kinematic parameters of 

an electric vehicle were recorded under real-world urban 

traffic conditions. The resulting speed profiles then served 

as input data for the simulation software. In the second 

stage, simulation studies were performed using AVL Cruise 

software, where a vehicle model corresponding to the real 

one was developed. The data from these simulations were 

then subjected to statistical analysis. 

Real-world tests were conducted on five selected urban 

road sections, each approximately 5 km long, characterized 

by varying traffic densities and road conditions. A total of 

60 drives were completed, encompassing both city out-

bound roads and urban routes with different levels of con-

gestion. Some routes were outbound roads, where traffic 

was relatively light, and the vehicle moved smoothly with 

few stops. The remaining routes involved driving through 

the city center, where traffic density was higher, necessitat-

ing more frequent stops and speed changes. Drives were 

carried out at two times of day: around midday, between the 

morning and afternoon rush hours, and during the afternoon 

rush hour itself. 

The routes varied in the number of signalized intersec-

tions, pedestrian crossings, and permissible speeds. The 

investigated routes included: 

 city outbound road (70 km/h speed limit) featured 3 

signalized intersections, 4 marked pedestrian crossings, 

and one roundabout 

 city outbound road (50 km/h speed limit) characterized 

by a varied elevation profile with an altitude change ex-

ceeding 60 m between its highest and lowest points. 
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This route included 8 intersections (5 signalized) and 4 

marked pedestrian crossings 

 city center routes: 

1) the first city center route, known for heavy traffic 

and a varied elevation profile, comprised 9 signal-

ized intersections, 5 marked pedestrian crossings, 

and 3 roundabouts 

2) the second city center route included 15 intersec-

tions (12 signalized) and 3 marked pedestrian cross-

ings; 

 residential area route encompassed 29 intersections (4 

signalized) and 9 marked pedestrian crossings. It fea-

tured significant speed restrictions (in places down to 20 

km/h) typical of residential roads, along with speed re-

ductions enforced by speed bumps. 

The selection of five routes ensures that the study re-

flects typical urban driving scenarios. This prevents the 

results from being limited to specific, atypical situations, 

allowing them to be generalized to the real-world usage of 

electric vehicles in urban environments. 

The test vehicle used was a Hyundai Kona electric.  

A Kistler™ type GPS Data Logger was employed to meas-

ure vehicle motion parameters, recording data such as travel 

time, instantaneous velocity, instantaneous longitudinal 

acceleration, distance traveled, and instantaneous position 

(10 Hz sampling frequency, GPS position accuracy < 2.5 

m). The collected data were used to create velocity profiles 

characteristic of each route. All drives were performed by  

a single driver. Examples of the recorded velocity profiles 

as a function of time are presented in Fig. 1. 

 

 

Fig. 1. Representative speed profiles from the investigated routes (a) 

 midday, (b) peak hours 

2.2. AVL Cruise modeling and simulation  

AVL CRUISE is an advanced analytical tool designed 

for detailed modeling of both mechanical and regenerative 

systems. This capability allows for the optimization of 

braking strategies concerning energy efficiency, safety, and 

driving comfort. The software serves as a sophisticated 

instrument for analyzing vehicle dynamics and optimizing 

its powertrain and braking systems, with particular empha-

sis on the energy recuperation system. The developed vehi-

cle model facilitates advanced analyses of the kinetic ener-

gy recovery process via the recuperation system, while 

simultaneously accounting for the mechanical and thermal 

aspects of the braking system's operation. A schematic 

representation of the electric vehicle model is provided in 

Fig. 2.  

 

 Fig. 2. Electric vehicle model in AVL Cruise  

 
Table 1. Selected technical parameters of the electric vehicle  

Electric motor Motor type Permanent Magnet 

Synchronous Motor 

(PMSM) 

Maximum motor 

power 

100 kW 

Maximum torque 395 Nm 

Battery Type Lithium-ion 

Energy capacity 39.2 kWh 

Vehicle dimensions 

and mass 

Length 4180 mm 

Width 1800 mm 

Height 1570 mm 

Wheelbase 2600 mm 

Curb weight 1535 kg 

Payload capacity 150 kg 

 

The electric vehicle braking system in AVL Cruise 

comprises two primary components: 

 mechanical braking system, which consists of disc 

brakes actuated by a hydraulic system, which includes  

a pump, pressure lines, and wheel cylinders located at 

each wheel; 

 kinetic energy recuperation system, that incorporates an 

electric machine operating in generator mode, convert-

ing the vehicle's kinetic energy into electrical energy, 

which is then directed via an inverter to the battery. 

These two systems operate concurrently, with their in-

teraction dictated by braking torque control algorithms. 

The electric vehicle model used in the simulation stud-

ies replicated the parameters of the actual Hyundai Kona 

electric. Table 1 presents selected technical parameters of 

(b) 

(a) 
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this electric vehicle. For each simulation performed, the 

initial battery state of charge was set to 75%. 

2.3. Data analysis 

The data collected were analysed using Statistica soft-

ware. Pearson correlation analysis was applied to assess the 

relationships between braking parameters – such as the 

number of braking events (nham), average braking speed 

(vhsr), average braking deceleration (dsr), and maximum 

braking force (Fh_max), and the amount of recovered energy 

(Ereg). Additionally, the K-Means clustering method was 

used to group drives into four distinct clusters. This allowed 

for the identification of driving patterns that influence recu-

peration efficiency. The results were validated using 

ANOVA and 10-fold cross-validation, ensuring the robust-

ness and reliability of the obtained data. 

3. Results 

3.1. Analysis of energy recovered in selected test routes 

The analysis is based on data obtained from 60 real-

world trips and their corresponding AVL Cruise simula-

tions. The influence of key braking parameters – such as the 

number of braking events, average braking speed, decelera-

tion, and maximum braking force – on the amount of ener-

gy recovered (Ereg) is examined. The results are organized 

into two subsections: Subsection 3.1 details the energy 

recovery characteristics across the test routes, including 

statistical correlations between braking parameters and 

recovered energy. Subsection 3.2 applies K-Means cluster-

ing to identify distinct driving patterns and their impact on 

recuperation efficiency, highlighting optimal conditions for 

maximizing energy recovery. These findings provide in-

sights into the effectiveness of regenerative braking systems 

in diverse urban traffic scenarios. 

Energy recuperation in electric vehicles is most effec-

tive in urban traffic conditions, where the number of brak-

ing events is highest. Optimizing recuperation in such envi-

ronments can significantly boost vehicle energy efficiency. 

Increasing the initial braking velocity and braking force 

within moderate limits can favorably impact the amount of 

energy recovered. Therefore, the goal should be to design 

recuperation systems that enable maximum energy recovery 

across a wide range of traffic conditions. Urban driving, 

while leading to higher energy consumption due to frequent 

speed changes, also offers the greatest potential for energy 

recovery during braking.  

Simulation studies utilized velocity profiles from 60 ur-

ban driving trips, each approximately 5 km in length. The 

routes were diverse, and data collection took place on 

weekdays. Figure 3 and Fig. 4 present the number of brak-

ing events recorded on the test routes. 

An average of 77 braking events was logged per trip. 

The highest recorded instance was 158 braking events in  

a single trip, translating to 31 braking events per kilometre. 

Figure 5 presents the distribution of total energy consump-

tion (Ec) across the analysed trips. 

The analysed trips showed an average energy consump-

tion of 2772.6 kJ (0.77 kWh), with values ranging from 

1292.28 kJ (0.36 kWh). On a per-kilometre basis, the vehi-

cle consumed an average of 554.52 kJ (0.15 kWh). The 

peak energy consumption, approximately 3597.24 kJ (1 

kWh), occurred during a rush-hour trip through the city 

centre. This particular instance was characterized by heavy 

traffic and an average driving speed of 16.36 km/h. Figure 

6 presents the distribution of recovered energy values (Ereg) 

for all trips. 

 

 Fig. 3. Distribution of braking events (nham) in test routes 

 

 Fig. 4. Distribution of braking events per km (nham/km) in test routes 

 

 Fig. 5. Distribution of energy consumption (Ec) in test routes 

 

 Fig. 6. Distribution of recovered energy values (Ereg) in test routes 
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On average, 595.42 kJ (0.17 kWh) of energy was recov-

ered per trip. The range of recovered energy values was 

710.71 kJ. The highest recorded value of recuperated ener-

gy during braking in the analysed trips was 1026.64 kJ 

(0.29 kWh). This particular trip also showed the highest 

energy consumption. 

The number of braking events in urban driving reflects 

traffic dynamics; intense traffic and frequent stops lead to 

greater energy recovery. In areas with numerous stops (e.g., 

city centres), higher recuperation efficiency can be ex-

pected. It is evident that the amount of recovered energy 

increases with the number of braking events. In the ana-

lysed trips, these parameters exhibit a linear relationship.  

A correlation coefficient (r) equal to 0.9 indicates a very 

strong positive correlation between the number of braking 

events and the energy recovered (Fig. 7). 

 
(a) 

 

(b) 

 

Fig. 7. Scatter plots of total energy recovered during braking and number 

 of braking events (a), and number of braking events per 1 km (b) in a trip 

 

The kinetic energy a vehicle possesses – and can poten-

tially recover – is directly tied to its mass and initial braking 

velocity. Consequently, even minor increases in velocity 

lead to a significant rise in the energy available for recuper-

ation. Deceleration reflects the dynamics of the braking 

process – that is, the rate at which vehicle velocity changes. 

Intense braking with high deceleration leads to a faster 

conversion of kinetic energy, requiring an appropriate re-

sponse from the recuperation system to effectively recover 

the energy. 

For each recorded braking manoeuvre, the initial brak-

ing velocity and deceleration were estimated. An average of 

these values was then calculated for each individual trip. 

Figure 8 presents the distribution of the average initial 

braking velocity (vhsr), and Fig. 9 presents the average de-

celeration (dsr) across the analysed trips. Figure 10 shows 

scatter plots of the total energy recovered during braking, 

along with the average braking velocity and average decel-

eration values. 

 

 Fig. 8. Distribution of average initial braking velocity (vhsr) in test routes 

 

 Fig. 9. Distribution of average deceleration (dsr) in test routes 

 

(a) 

 

(b) 

 

Fig. 10. Scatter plots of total energy recovered during braking and average 

 initial braking velocity (a), and average deceleration (b) in a trip 
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For the analysed trips, the average initial braking veloci-

ty was 18.24 km/h, with an average deceleration of 1.42 

m/s
2
. Analysis of the averaged deceleration and initial ve-

locity values for each trip indicated only a weak influence 

of these parameters on the total recovered energy. The trend 

line exhibits a slight positive slope, suggesting that in-

creased average braking velocity could lead to a minor rise 

in recuperated energy. This is largely attributable to the fact 

that higher initial velocity inherently offers more kinetic 

energy for recovery. However, average braking decelera-

tion shows a stronger correlation with the amount of recov-

ered energy than the average initial braking velocity. 

For each braking manoeuvre during the trips, the brak-

ing force was estimated. Figure 11 presents the distribution 

of averaged maximum braking force (Fh_max) values for 

each completed trip. 

Braking force is a critical factor in the recuperation pro-

cess as it dictates how effectively a vehicle's kinetic energy 

can be converted into electrical energy. The average brak-

ing force for the analysed trips was 1749.07 N. The aver-

aged braking force values per trip show a moderate correla-

tion with the energy recovered. An increase in braking 

force allows for a greater amount of energy to be recovered 

during electric vehicle braking (Fig. 12). 

 

Fig. 11. Distribution of averaged maximum braking force (Fh_max) in test 
 routes 

 

Fig. 12. Scatter plots of total energy recovered during braking averaged 

 maximum braking force 

 

Urban conditions offer substantial potential for effective 

recuperation, with braking force and dynamics being key 

factors influencing energy recovery. Based on averaged 

values for initial braking velocity, deceleration, and braking 

force, the foregoing analyses aim to elucidate the general 

influence of these parameters on the total energy recuperat-

ed during a trip. 

The obtained results indicate that initial braking velocity 

influences the amount of kinetic energy available for recov-

ery. A higher initial velocity during a braking manoeuvre 

presents an increased potential for energy recovery; howev-

er, the correlation observed at the trip level is weak, which 

may be attributed to the significant variability in prevailing 

road conditions and the diversity of braking scenarios en-

countered. The deceleration during braking is associated 

with the dynamic characteristics of the braking event.  

A moderate correlation indicates that more aggressive brak-

ing manoeuvres may result in enhanced recuperation effi-

ciency. Simultaneously, braking force, being directly pro-

portional to the kinetic energy conversion into electrical 

energy, exhibits a moderate reliance on the overall energy 

recovered throughout a given trip. 

3.2. K-Means clustering of routes based on recuperation 

patterns 

Another objective of this research was to identify energy 

recovery patterns during braking in electric vehicles and to 

segment routes based on key braking parameters using the K-

Means algorithm. This algorithm partitions data into k clus-

ters by minimizing the sum of squared distances between 

observations and centroids. The dependent variable was the 

total energy recovered during braking per trip (Ereg). 

The following parameters were utilized in the study: 

 number of braking events in trip (nham) 

 number of braking events per kilometer (nham/1km) 

 average initial braking velocity (vh_sr) in trip 

 average deceleration (dsr) in every trip 

 averaged braking force (Fh_max) values for each com-

pleted trip. 

To ensure data comparability and mitigate issues arising 

from differing units and value ranges, all data underwent 

standardization, scaling them to a mean of 0 and a standard 

deviation of 1. This standardization was crucial because the 

K-Means algorithm utilizes a Euclidean metric, where vari-

ables with larger values could otherwise dominate the anal-

ysis and skew the results. 

The initial centroids were established using a method of 

maximizing the distance between them, which promotes  

a better separation of natural clusters. The optimal number 

of clusters (k = 4) was determined by analysing the "elbow 

method" and the silhouette coefficient. Each trip, represent-

ed as a feature vector, was assigned to its nearest centroid 

using Euclidean distance. Subsequently, the centroids were 

updated as the mean of the vectors assigned to their respec-

tive clusters. This iterative process continued until conver-

gence was achieved (i.e., minimal changes in centroid posi-

tions). All computations were performed using Statistica 

software. 

The data from 60 trips were divided into four distinct 

groups (Fig. 13), suggesting the presence of four clear be-

havioural patterns related to braking parameters and the 

energy recovery system. Trips within each cluster (C) ex-

hibit comparable characteristics, specifically regarding the 

number of braking events, braking events per kilometre, 

average initial velocity, average deceleration, and average 

maximum braking force recorded for each trip. 
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Fig. 13. K-Means clustering results for Ereg 

 

Verification of the four-cluster division's capacity to ac-

curately represent significant differences in the analyzed 

variables' behavior was achieved through an Analysis of 

Variance (ANOVA), performed on all quantitative varia-

bles (Table 2). A significance level of 0.05 was adopted. 

The effect size was calculated based on the F-statistic and 

the sums of squares (SS). 

The ANOVA results demonstrated that the differences 

between clusters are statistically significant (p < 0.001 for 

most variables). The K-Means segmentation is thereby 

confirmed to effectively differentiate trips based on braking 

and energy recovery parameters. The exceptionally high F-

statistic values observed for the chosen parameters under-

score their critical role in distinguishing trips by their ener-

gy recuperation characteristics. 

 
Table 2. ANOVA test results 

Parameter Between-

Group SS  

Within-

Group SS 

F-statistic p-value 

Ereg 37.86 21.14 33.42 0.0000 

nham 40.11 18.89 39.64 0.0000 

nham/1 km 39.58 19.42 38.05 0.0000 

vh_sr 26.85 32.15 15.59 0.0000 

dsr 31.28 27.72 21.06 0.0000 

Fh_max 42.14 16.86 46.67 0.0000 

 

To verify the stability of the results, 10-fold cross-

validation was applied, and outliers that could distort the 

clustering outcomes were removed. The final error in the 

training sample was 0.371, indicating a relatively good 

quality of dependent variable assignment to the clusters. 

The subsequent stage of analysis involved evaluating 

the energy recovered within the four clusters generated by 

the K-Means algorithm. This analysis specifically consid-

ered key braking process parameters: average braking ve-

locity, average braking deceleration, and maximum braking 

force. The study aimed to identify the correlations between 

these variables and the total recovered energy. Figure 14 

visually represents the Ereg values in relation to these pa-

rameters across the 4 clusters.  

Cluster 1 (C1) comprises trips with the lowest energy 

recovery, ranging from 315.93 to 514.54 kJ. These trips are 

characterized by a low average braking velocity (11.84–

16.46 km/h), slight deceleration (1.12–1.48 m/s²), and mod-

erate braking force (2227.78–4192.34 N). The low number 

of braking events (26–76 per trip) suggests a smooth driv-

ing style. This cluster likely represents trips conducted 

under lower traffic density, which consequently limits the 

effectiveness of energy recuperation. 

In Cluster 2 (C2), the recovered energy ranges from 

318.50 to 822.03 kJ, indicating greater recovery efficiency 

than in Cluster 1. The average braking velocity falls be-

tween 15.83 and 23.82 km/h, with average deceleration 

ranging from 1.24 to 1.64 m/s
2
. Braking force values 

(2624.99–6391.37 N) suggest more dynamic braking ma-

neuvers. These trips are characterized by more frequent 

stops (30–87 braking events). This cluster likely includes 

both midday trips and those conducted under higher traffic 

density. 

 
(a) 

 

(b) 

 

(c) 

 

Fig. 14. Clustering of Ereg in 4 clusters based on average braking velocity 
(a), average braking deceleration (b), and maximum braking force (c) in 

 analyzed trips 
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Cluster 3 (C3) exhibits significantly higher energy recov-

ery, ranging from 450.80 to 752.47 kJ, compared to the first 

two clusters. Braking events in this cluster are more intense, 

with an average velocity of 14.05–20.56 km/h and greater 

deceleration (1.3–1.67 m/s
2
). The maximum braking force 

values are the highest among all clusters, recorded between 

5432.10 and 8737.75 N. The high frequency of braking 

events (68–98 per trip) suggests driving conditions typical of 

heightened urban traffic during the afternoon rush hour. 

Cluster 4 (C4) exhibits the highest energy recovery, 

ranging from 548.51 to 1026.64 kJ. Despite braking veloci-

ty (13.15–22.08 km/h) similar to those in C2 and C3, the 

critical factor is the very high number of braking events 

(84–158 per trip). Braking in this cluster is frequent but not 

excessively intense, as indicated by maximum braking 

force values between 2612.34 and 6280.18 N. These trips 

likely occurred under conditions of the highest traffic densi-

ty, necessitating frequent stops and accelerations. 

In summary, the highest energy recovery was observed 

under conditions of intensive urban traffic, characterized by 

frequent, though not necessarily abrupt, braking (C4). Con-

versely, the lowest recovered energy values were recorded 

during trips defined by smooth driving with infrequent brak-

ing (C1), which corresponds to off-peak driving conditions. 

To further analyse the efficiency of the recuperation 

system in electric vehicles under varying urban driving 

conditions, the percentage recuperation efficiency (ηreg) was 

evaluated for each of the four clusters identified by the  

K-Means method. This efficiency was defined as the ratio 

of energy recovered (Ereg) to the total energy consumed per 

trip (Ec), expressed as a percentage, according to the fol-

lowing formula: 

 ηreg [%] = (
Ereg

Ec
) ∙ 100 (1) 

The recuperation system's effectiveness in transforming 

the vehicle's kinetic energy into electrical energy across 

varying urban driving conditions can be assessed using this 

metric. The percentage energy recovery efficiency (ηreg) for 

the four identified clusters is presented in Fig. 15. 

 

 Fig. 15. Percentage of energy recovery efficiency (ηreg) by cluster 

 

A direct relationship between energy recovery efficiency 

and the number of braking events is evident, notably within 

C4, where the combination of frequent, albeit moderate, 

braking in high-traffic scenarios optimizes recuperation. In 

contrast, C1 and C3, characterized by fewer braking events, 

demonstrate reduced efficiency. This diminished efficiency 

in C3, despite more intense braking, may suggest the occur-

rence of energy dissipation during abrupt manoeuvres. 

The impact of initial braking velocity and maximum 

braking force on overall energy recovery efficiency is nota-

bly constrained. This observation implies that traffic dy-

namics, rather than the intensity of isolated braking events, 

constitute the predominant factor. Such findings are instru-

mental in guiding the further optimization of recuperation 

systems, especially in the development of control algo-

rithms designed for the specificities of urban driving. 

4. Discussion 
This study significantly contributes to understanding the 

dynamics of energy recovery in electric vehicles under 

urban driving conditions, focusing on the relationships 

between braking parameters and recuperation efficiency.  

A key finding is the strong correlation between the number 

of braking events and the energy recovered, underscoring 

that urban traffic with frequent stops is an optimal envi-

ronment for recuperation. K-Means cluster analysis re-

vealed four driving patterns, with Cluster C4 demonstrating 

the highest recuperation efficiency (23.16%). This cluster 

was characterized by the highest number of braking events 

(84–158) and moderate dynamics within intensive traffic. 

Conversely, Cluster C1, marked by smooth driving and  

a limited number of braking events (26–76), exhibited the 

lowest efficiency (18.45%). This highlights the crucial role 

of braking frequency in the recuperation process.  

The presented results align with the fundamental physi-

cal principles governing recuperation systems. This align-

ment is further corroborated by existing literature [1, 6, 17], 

which concludes that a higher frequency of braking cycles 

translates to more efficient recovery of a vehicle's kinetic 

energy during deceleration. 

Comparing our findings with existing literature, the av-

erage recuperation efficiency of 21.47% falls within the 

typical range for electric vehicles operating in urban envi-

ronments, thereby confirming the robustness of our meth-

odology [8, 10, 20]. However, this study's detailed segmen-

tation of routes using K-Means clustering and the analysis 

of varied speed profiles differentiate it from standard re-

search based on predefined cycles like WLTP. This ap-

proach offers deeper insights into the impact of real-world 

traffic conditions. Notably, Cluster C3 exhibited lower 

efficiency (18.52%) than Cluster C4, despite a substantial 

number of braking events (68–98) and significant braking 

forces (5432.10–8737.75 N). This discrepancy may suggest 

energy dissipation due to abrupt braking, wherein kinetic 

energy is converted into heat within the mechanical braking 

system.  

The presented results have practical implications for 

both electric powertrain designers and electric vehicle us-

ers. For engineers designing recuperation systems, it is 

recommended to focus on maximizing the efficiency of 

regenerative braking under frequent, low-intensity braking 
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conditions, such as those observed in Cluster C4. This may 

involve adjusting braking system control algorithms to priori-

tize recuperation in such scenarios. From the perspective of 

drivers, this study suggests that anticipating situations requir-

ing stops and employing gentle braking can contribute to 

increased energy recovery efficiency, thereby extending 

vehicle range. Such driving strategies may be particularly 

beneficial in urban driving conditions, where numerous stops 

are necessitated by traffic infrastructure and density. 

Several limitations warrant consideration within this 

study. Primarily, the exclusive use of a single driver for all 

trips constrained the diversity of driving styles, which, in 

turn, may limit the broader generalizability of the findings. 

It is acknowledged that variations in driving technique 

could potentially influence both braking dynamics and 

energy dissipation. Secondly, the AVL Cruise simulations 

were performed under consistent conditions of battery state 

of charge (SOC = 75%) and ambient temperature. This does 

not fully represent the complete range of real-world operat-

ing environments, given that a reduced SOC or colder tem-

peratures can adversely affect battery performance. Finally, 

the analysis was confined to the Hyundai Kona Electric 

model, thus precluding a comprehensive assessment of 

design differences, such as vehicle mass or drivetrain type, 

across other electric vehicle models.  

This study corroborates that frequent, moderate braking 

within high-density urban traffic optimizes energy recovery 

in electric vehicles. These findings have the potential to 

propel the development of more efficient recuperation sys-

tems and encourage driving techniques that extend vehicle 

range, thereby contributing to the advancement of electro-

mobility. Continued research, encompassing a wider array 

of variables, will facilitate a more precise adaptation of this 

technology to authentic operational conditions. 

5. Conclusions 
This study, which investigated the influence of braking 

parameters on energy recovery in electric vehicles under 

urban driving conditions, confirmed our hypotheses and led 

to the following conclusions: 

 Statistical analysis revealed a very high correlation (r = 

0.9) between the number of braking events and the 

amount of energy recovered, confirming the crucial role 

of braking frequency in the recuperation process.  

 The application of the K-Means clustering method iden-

tified four distinct regenerative braking patterns. The 

highest recuperation efficiency (23.16%) was achieved 

in the cluster characterized by the greatest number of 

braking events (84–158) and moderate braking force, 

whereas the lowest efficiency (18.45%) was observed in 

the cluster with fewer braking events (26–76) and a high 

average trip velocity. 

 The average recuperation efficiency observed under the 

studied urban conditions was 21.47%, which aligns with 

the typical operational range observed for electric vehi-

cles. 

It can therefore be concluded that the key factor in max-

imizing recuperation is the frequency of braking events, 

along with their moderate intensity, which enables the effi-

cient conversion of kinetic energy into electrical energy. 

The findings of this study have broad applicability, ex-

tending beyond fully electric vehicles to include hybrid 

electric vehicles, which also utilize recuperation systems 

for energy recovery during braking. The study's key in-

sights, such as the significance of braking frequency and 

characteristics for recuperation efficiency, are universal and 

can be directly applied to HEVs. Optimizing braking strate-

gies based on the patterns identified in Cluster C4 could 

enhance energy recovery, thereby improving overall vehicle 

efficiency. In the context of hybrid vehicles, this could 

directly translate to reduced fuel consumption. 

In conclusion, this study offers a significant contribution 

not only to the progression of electric drivetrain technology 

but also by providing universal insights directly applicable 

to hybrid vehicles, thereby fostering enhanced energy effi-

ciency and promoting sustainable development within the 

automotive sector. 

 

Nomenclature 

dsr average braking deceleration 

Ec total energy consumption in test route 

Ereg total regenerated energy in test route 

EV electric vehicle 

Fh_max  average maximum braking force 

GPS global positioning system 

HEV hybrid electric vehicle 

NEDC  New European Driving Cycle 

nham number of braking events 

nham/1 km number of braking events per 1 kilometr 

ηreg  percentage recuperation efficiency  

r Pearson correlation coefficient 

RBS regenerative braking systems 

SOC state of charge 

vhsr average braking velocity 

WLTC  Worldwide Harmonised Light Vehicles Test 

Procedure  
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