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ARTICLE INFO

In recent years, artificial intelligence (Al) has found application in numerous technical areas, including the

automotive research and development sector. This paper considers the use of Al tools for the development of
driving cycles for testing vehicles on a chassis dynamometer. The above idea was investigated on the example of
a driving cycle simulating the use of a passenger car in urban conditions. The empirical data were collected
during vehicle road tests in real traffic and then processed statistically by determining the values of selected
driving pattern characteristics. Sections of vehicle velocity courses (‘micro-trips’) were selected and combined
into a driving cycle representative of the road conditions prevailing during road tests. Processing of empirical
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data and combining velocity sections into a driving cycle was performed using Al-enhanced software utilizing
large language models that convert user commands in natural language into Python code. The developed
driving cycle was compared with selected standard urban driving cycles in terms of the values of driving pattern
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1. Introduction
The most significant negative impacts of combustion

engines on the environment include exhaust emissions,

which contain substances that are toxic to living organisms
and contribute to climate change [13]. Additionally, the
combustion of fossil fuels leads to the depletion of non-
renewable natural resources [16]. Growing awareness of
these threats has sparked actions against environmental
degradation. They were first undertaken in the field of
combustion engine applications in motor vehicles, both
light- and heavy-duty, primarily due to their widespread
use. Over the past few decades, significant progress has
been made in this area, thanks in part to the development
and validation of effective methods for testing pollutant

emissions [22].

To ensure consistent testing conditions for vehicles,
standardized test procedures are necessary. In the case of
light vehicles, such as passenger cars and delivery vans
(which are categorized according to relevant regulations),
these tests are conducted under conditions that simulate
traction operation. For metrological reasons, testing is car-
ried out in laboratories using chassis dynamometers [1, 9,
24]. A crucial element of the dynamometer testing method-
ology, which connects the testing conditions with real driv-
ing performance, is the driving cycle [9, 11].

A ‘Driving cycle’ refers to a predefined sequence of ve-
hicle velocity as a dependence of time, designed to replicate
real-world driving patterns for testing purposes, typically
related to emissions or fuel efficiency [3, 9, 11, 20]. Driv-
ing cycles can be divided into two categories [11]:

1. Standard cycles, which are recognized by international
homologation regulations (e.g. WLTC, FTP-75, UDDS
(FTP-72), HWFET, SFTP US06, SFTP SC03, NEDC,
JC08, 10-15 Mode and CLTC)

2. Special cycles, which are created for specific scientific,
research, and development purposes (e.g. CADC (Ar-
temis), Autobahn, ADAC Highway Cycle, PIMOT CT,
UT, RT, HT).

To date, several hundred driving cycles have been de-
veloped globally [3, 11]. The vast number of cycles can be
attributed to the diverse traffic conditions they simulate,
such as urban, rural, motorway, and expressway driving, as
well as traffic congestion. Additionally, the development of
cycles that are representative of specific geographical areas,
such as countries, regions, or even cities, has contributed to
the increasing number of driving cycles. This growth is
further driven by advancements in the scientific foundations
and methodologies used to create these cycles.

The representativeness of driving cycles relative to the
actual traffic conditions they aim to simulate is influenced
by four main factors [5]:

1. Quality and quantity of empirical data obtained from the
vehicle road test

2. Methodology used to develop the driving cycle

3. Selection of driving pattern parameters that serve as
criteria for the driving cycle's compliance with actual
empirical data

4. Duration of the driving cycle.

As for the stage of collecting empirical data, currently
most researchers utilize information from the vehicle's On-
Board Diagnostics (OBD) system [19], and devices based
on Global Positioning System (GPS) technology [28].
These tools allow for conducting low-cost, large-scale road
tests, with multiple vehicles and/or drivers, providing an
extensive dataset for further analysis. Additionally, the
scope of these road tests can be expanded to include pollu-
tant emission measurement using Portable Emission Meas-
urement Systems (PEMS) [25] and visual recordings of
driver behavior or the vehicle's surroundings.

Regarding the second factor, methods for developing
driving cycles can be categorized into two main groups:
deterministic and stochastic [8, 27], with further subdivi-
sions according to minor methodological nuances.

The most commonly utilized deterministic approach is
the trip-based method, where each vehicle trip recorded
during data collection can be selected as a representative
driving cycle using criteria based on the similarity of driv-
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ing pattern parameters, such as average velocity or average
acceleration. This method is repeatable, generating the
same driving cycle each time for the same input data and
similarity criteria.

The primary stochastic methods include the Markov
chain-Monte Carlo method and the micro trip method [30].
In the first one, the velocity course of the driving cycle is
generated artificially through a detailed analysis of road test
data. Velocity and acceleration matrices are created along
with the probabilities of specific states defined by velocity
and acceleration. The order of these states is then selected
using a pseudo-random Monte Carlo method [15, 30]. In
the micro trip method, all recorded velocity courses from
road tests are divided into micro trips by isolating from
each velocity course individual sections that cover the vehi-
cle’'s movement: starting from a complete stop, traveling at
a non-zero velocity, braking to a stop, and the subsequent
period of time when the vehicle remains stationary. Then,
the sections are selected and connected in a quasi-random
manner until the assumed total cycle time is reached [8].
Additionally, microtrips can be grouped into clusters based
on common features, typically utilizing two or three select-
ed parameters [31]. The main advantage of these stochastic
methods is that the generated driving cycle is not identical
to any samples recorded during empirical tests. Conse-
quently, a different driving cycle can be obtained each time,
even with the same input data.

Since pollutant emissions and fuel consumption of vehi-
cle engines are exclusively tied to the conditions under
which the vehicle is tested, meaning a specific driving cycle
with a defined velocity course, it becomes essential to es-
tablish criteria for assessing these velocity courses. In prin-
ciple, the basis for quantitative assessment should be nu-
merical estimates [33]. For a specific time course of veloci-
ty, these numerical estimates are referred to as 'driving
pattern parameters' or ‘zero-dimensional characteristics’ [2,
7, 20]. The quality of these parameters is determined by
their effectiveness for a particular application.

While some driving pattern parameters, such as average
and maximum velocity, average positive and negative ac-
celeration, and the share of driving and standing time, are
widely recognized, there is no consensus on the best set of
parameters to describe vehicle velocity patterns effectively.
Numerous examples of driving pattern parameters can be
found in the extensive literature on the topic [3, 4, 27]. To
ensure that the developed driving cycle accurately repre-
sents the simulated road conditions, driving pattern parame-
ters must be determined and compared for the driving cy-
cle’s velocity course and the entire set of velocity samples
from road tests [7, 27]. The above criterion is considered to
be fulfilled if the values of the driving pattern parameters in
both scenarios are similar and if the fuel/energy consump-
tion and pollutant emissions of a given vehicle during nor-
mal use align with those observed in the driving cycle on
a chassis dynamometer.

The duration of the driving cycle is also an important
factor [12]. Long cycles can be costly to conduct and may
exceed the capabilities of laboratory equipment, such as the
capacity of exhaust gas bags, while shorter cycles may
increase the measurement uncertainty. In practice, the dura-

tion of the driving cycle depends on the developer, as there
is no consistent, recognized methodology in this field.
Many of the common driving cycles are typically around 20
minutes long [27].

In recent years, artificial intelligence (Al) has found ap-
plication in numerous technical fields, including automotive
research and development. Al is a general term that encom-
passes several specific domains, such as machine learning,
fuzzy logic, computer vision, evolutionary computing, and
neural networks. The scientific literature highlights the
application of certain Al features in the context of develop-
ing driving cycles. For example, Jia et al. [17] proposed
a new method for generating driving cycles for heavy-duty
vehicles using the Markov Chain method together with an
average velocity-based matching algorithm. Mostashar-
shahidi et al. [23] examined the impact of learning-based
Al algorithms on constructing driving cycles for off-road
vehicles, namely agricultural tractors. Sankar et al. [29]
employed a constrained genetic algorithm to optimize the
vehicle velocity when creating a driving cycle oriented
towards fuel consumption and driver comfort. Qiu et al.
[26] demonstrated a data-driven, recurrent neural network-
based method to develop driving cycles for light-duty vehi-
cles in Beijing that simulate actual driving patterns. Gebisa
et al. [10] utilized a neural network and principal compo-
nent analysis to create a driving cycle for passenger cars
using real-time data from Addis Abeba. Londono et al. [21]
proposed a methodology to identify the most representative
motorcycle driving patterns across various topographies,
taking into account factors like elevation above sea level
and slope variations, using Al techniques such as support
vector machines and clustering.

The purpose of this paper is to demonstrate the feasibil-
ity of using Al tools based on natural language processing
to develop driving cycles. A case study of a driving cycle
designed to simulate urban traffic conditions for a passen-
ger car is presented. The cycle was generated based on
empirical data collected from road tests of a vehicle in real
traffic. The velocity course constituting the driving cycle
was generated using the micro-trip method, where individ-
ual velocity sections were selected and compiled by Al.
Finally, the developed driving cycle was compared with
selected standard urban driving cycles in terms of the val-
ues of driving pattern characteristics.

2. Materials and methods

2.1. Research framework

The subsequent section outlines the research framework
of this study. Section 2.2 provides an overview of the col-
lection of road traffic data, including the technical specifi-
cations of the vehicle and the test equipment used. Section
2.3 introduces the main methodological assumptions re-
garding the procedures adopted for processing empirical
data to construct the driving cycle, the selection of driving
pattern characteristics as criteria for the representativeness
of the developed driving cycle, and the duration of the cy-
cle. Finally, section 2.4 describes the Al-based software
that supports the development of the driving cycle.
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2.2. Experimental data collection

Road tests were conducted to gather statistical data on
vehicle driving under the urban conditions considered,
which later served as the foundation for developing a repre-
sentative driving cycle. The tests were conducted in War-
saw. To account for the random nature of the vehicle driv-
ing conditions, no specific route or time of day was desig-
nated. The same driver operated the vehicle throughout the
tests. The methodology involved having the driver follow
another randomly selected road user, thereby replicating
their driving style.

The object of the road tests was a city passenger car —
a hatchback from segment B, equipped with a spark-
ignition combustion engine. Figure 1 shows the test vehicle,
while its technical specifications are presented in Table 1.

Fig. 1. Vehicle used for the road tests

Table 1. Technical specifications of the tested vehicle

Parameter Unit Value
Engine type Spark-ignition
Fuel Gasoline
Engine displacement cm® 1596
volume

Arrangement and number Inline, 4

of cylinders

Fuel supply system Indirect, multi-point injection
Engine maximum power kW/rpm 88/6000

/at rotational speed

Engine maximum torque Nm/rpm 152/4050

/at rotational speed

Axle driven Front
Vehicle curb mass kg 1045
Transmission type Manual, 5-speed
Production year 2011
Emission class Euro 5

During road tests, the following driving parameters
were recorded:
— vehicle velocity [km/h]
— engine rotational speed [rpm]
— accelerator pedal relative position [%]
— coolant temperature [°C]
— engine relative load [%]
— air mass flow rate [g/s]
— air temperature in the intake manifold [°C]
— air pressure in the intake manifold [kPa]
— fuel pressure in the supply system [kPa]
— voltage at the battery terminals [V].

These driving parameters were recorded directly from
the vehicle’s OBD system using the TEXA OBD Log (Fig.
2). The technical specifications of the device can be found
in Table 2.

r

Fig. 2. TEXA OBD Log used to collect data in road tests

Table 2. Technical specifications of TEXA OBD Log

Parameter Unit Value
Processor ARM 32-bit Contex-M3
RAM kB 256

Internal memory kB 2048
Maximum data recording time h 90

Maximum sampling frequency Hz 1

Operating temperature range °C —40 to +85
Software IDC3 PC Suite

PC interface USB 1.0 cable
Power supply in the vehicle OBD 12 V connector

A total of 250 samples, which contain data from indi-
vidual 'journeys', that is, periods of vehicle use from engine
startup to shut down, were collected through road tests. The
samples underwent preliminary screening, and those with
a travel time exceeding 180 s and an average velocity of no
less than 10 km/h were arbitrarily accepted for further anal-
ysis [19]. Such a selection criterion aimed to eliminate the
few samples recorded during heavy traffic jams, treating
such conditions as a distinct category of road traffic [6].
Ultimately, 242 vehicle velocity course samples that met
the above-mentioned requirements were utilized as the
basis for developing the driving cycle.

The statistical parameters of the vehicle velocity courses
for 242 qualified measurements were as follows:

— total duration of all journeys — 214,067 s (almost 60 h)

— average duration of a single journey — 885 s (almost 15
min)

— average driving velocity — 24.82 km/h

— average maximum velocity — 74.61 km/h

— average time share of stops — 28.84%

— average number of stops — 15

— average duration of a single stop — 16 s

— average number of changes in the sign of the velocity

derivative (in 100 s) — 2
— average number of accelerations and decelerations in a

single journey — 153.
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2.3. Main methodological assumptions

In this study, the driving cycle was developed using the
micro-trip method. Each recorded trip was divided into
sections that begin and end with the vehicle stopped, i.e.
when the vehicle’s velocity is zero and the engine is idling.
The idling time at the end of the micro trip was included.
These sections were then randomly combined using the Al
tool. The goal was for the values of the selected driving
pattern parameters to closely match those of the entire data
set from the empirical studies (section 2.2).

The driving pattern parameters adopted as criteria for
evaluating the driving cycle included:

— average vehicle velocity

— maximum vehicle velocity

— time share of vehicle stops (with the engine idling).

The number of criteria parameters was intentionally kept
limited to avoid complicating the optimization task as-
signed to the Al software. Thus, no parameters related to
acceleration and deceleration were introduced, assuming
compliance of their values, as they were derived from actu-
al fragments of velocity courses from the road tests.

The duration of the driving cycle was arbitrarily set at
1200 s, which is similar to the timeframes of typical urban
cycles, such as JC08, NEDC, or FTP-72 [3, 11]. The
WLTC, currently in force in the European Union and some
other countries, lasts 1800 s, but accounts for urban, rural,
and highway driving conditions. In addition, it was as-
sumed that the driving cycle would begin and end with
a short phase (5 s) of the vehicle being stopped with the
engine idling.

The work on the driving cycle proceeded gradually. Ini-
tially, an attempt was made to create a driving cycle for 15
velocity samples. Once this procedure was mastered, the
same process was repeated for all 242 samples from the
empirical studies. Input commands were formulated for the
Al software, and the resulting outputs were analyzed. This
process provided the authors with valuable experience in
working with the program, and the resulting observations
and recommendations are included in the discussion section
of this paper.

The following order of commands was ultimately estab-
lished for the Al software:

1. Load a CSV file containing empirical data

2. Calculate driving pattern parameter values for the em-
pirical data (target values)

3. Split the empirical data (velocity courses) into micro-
trips

4. Compile micro-trips into a driving cycle, aiming to

obtain driving pattern parameter values as closely

aligned with the target as possible

Analyze the developed driving cycle

6. lteratively improve the cycle until the new version
achieves driving pattern parameter values closer to the
target.

Exemplary prompts entered into the program are in-
cluded in section 3.5 of the paper.

In this study, the authors adopted a guiding principle
that allowed the Al to find its own method for generating
a synthetic driving cycle. Therefore, a specific data pro-
cessing algorithm was not imposed, and a degree of ran-

o

domness in the selection of micro-trips was intentionally
allowed, with the only restrictions being those mentioned
above.

2.4. Al software

The processing of empirical data and the compilation of
velocity sections into a driving cycle were performed using
the Al software Julius. This software is designed for analyt-
ical statistics, data science, and computations. It operates on
the principle of leveraging large language models (LLMs),
such as OpenAl's ChatGPT and Google Gemini, which
convert user commands entered in natural language into
Python code. For more information about Julius, please
refer to [18].

The program features a straightforward interface that
facilitates a dialogue with the user. Commands were en-
tered sequentially in a logical order (as outlined in section
2.3), rather than as a single command that would generate
a driving cycle instantly.

3. Results and discussion

3.1. The developed driving cycle

Figure 3 illustrates the final version of the driving cycle
that simulates urban traffic conditions, developed using the
Julius Al software based on a complete set of 242 velocity
samples recorded during empirical tests.

80

70

60

0 200 400 600 800 1000 1200
t[s]

Fig. 3. Vehicle velocity course in the developed driving cycle (Al Cycle)

As can be seen in the graph, the vehicle velocity course
reflects typical urban driving patterns. In urban areas, vehi-
cle velocity fluctuates, incorporating phases of acceleration,
deceleration, and idling, which capture the stop-and-go
nature of city driving. This variability is attributed to vari-
ous factors, including intersections controlled by traffic
lights, traffic calming measures, high traffic volume, re-
duced velocity limits etc. Traffic lights not only cause vehi-
cles to stop, but also slow them down as drivers anticipate
stopping. Similar effects arise from traffic calming
measures such as speed bumps, raised intersections, and
others, leading to deceleration before and acceleration fol-
lowing these obstacles. Furthermore, rapid changes in vehi-
cle speed are often influenced by the presence of numerous
other road users. Finally, the peak velocities observed in the
developed driving cycle are typical for urban conditions. In
Polish cities, the velocity limit is 50 km/h in built-up areas,
though this limit may vary based on road signs. Certain
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road sections within cities also allow higher velocities, such
as 70 km/h.

The above-mentioned characteristic features of the de-
veloped velocity course distinguish it from the relatively
smoother velocity patterns typical in rural areas and espe-
cially on highways (motorways/express roads) [6], which
exhibit fewer sharp peaks and less frequent stops — often
none at all.

3.2. Comparison of the developed Al driving cycle with
experimental data

The selected driving pattern parameters were chosen to
serve as the criteria of representativeness of the created Al
driving cycle for the modeled traffic conditions. The values
of these parameters were calculated and compared between
the developed driving cycle and the complete set of velocity
samples from the experimental data. The results are pre-
sented in Table 3.

Table 3. Comparison of driving pattern parameters determined for the
developed driving cycle and all samples collected during road tests

Parameter Unit | Aldriving | All veloci- | Relative
cycle ty samples | difference
Time/average time S 1200 885 35.59%
Average velocity km/h 22.85 24.82 —7.94%
Maximum velocity | km/h 72.00 74.61 —3.50%
Time share of stop % 27.08 28.84 —6.10%

The driving pattern parameters determined for the de-
veloped driving cycle and the experimental data showed no
significant differences. The average vehicle velocity in the
driving cycle was 1.97 km/h lower than in road tests, trans-
lating to a relative change of —7.94%. The share of idling
time was 1.76% lower (-6.10%), and the maximum veloci-
ty was 2.61 km/h lower (-=3.50%). In terms of the duration
of the developed cycle compared to the average time of
a single trip during road tests, the difference is not signifi-
cant, as the cycle time was chosen arbitrarily.

3.3. Comparison of the developed Al driving cycle with

selected standard driving cycles

Table 4 presents a comparison of selected parameters of
the driving cycle obtained using Al with those of selected
standard driving cycles: the Japanese JCO08, American
UDDS (FTP-72), European NEDC, and the global WLTC.
Additionally, Figure 4 graphically compares the velocity
courses of the developed driving cycle with those of the
aforementioned standard cycles.

Table 4. Comparison of selected parameters of the developed driving cycle
and selected standard driving cycles [11]

Parameter Unit Al JCO8 | UDDS | NEDC | WLTC
driving (FTP- Class

cycle 72) 3-2

Time/average time S 1200 | 1204 | 1372 | 1180 | 1800
Distance traveled m 7616 | 8171 | 11997 | 11017 | 23250
Average velocity km/h | 22.85 [24.40 | 31.60 | 33.60 | 46.50
Maximum velocity | km/h | 72.00 | 81.60 | 91.25 |120.00 | 131.30

Time share of stop % 27.08 | 28.7 | 178 | 23.7 12.6

The comparison indicates that the Al-generated driving
cycle is the closest to the Japanese JC08. Both cycles exhib-
it a similar overall character of the velocity course (Fig. 4a),
nearly the same duration (1200 s vs. 1204 s), and a compa-

rable idling time (27.08% vs. 28.70%). However, the Al
cycle has a slightly lower average velocity (22.85 km/h

a) %
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=
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0 200 400 600 800 1000 1200
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<
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0 | il 1 11 1
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= 80
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0
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d) 140
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Fig. 4. Comparison of vehicle velocity courses in the developed driving
cycle (Al Cycle) with those of selected standard driving cycles: a) JC08, b)
FTP-72, ¢c) NEDC, d) WLTC
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vs. 24.40 km/h) and a lower maximum velocity (72.00
km/h vs. 81.60 km/h). Consequently, the lower average
velocity and cycle time result in a theoretically shorter
distance traveled (7616 m vs. 8171 m).

The sharp velocity peaks observed in the Al-generated
driving cycle closely resemble those of the UDDS (Figure
4b). However, the American cycle includes a section where
the vehicle reaches a velocity exceeding 90 km/h. When
comparing the parameters of the driving patterns, the Al-
generated cycle falls short of the UDDS in several areas:
duration (1200 s vs. 1372 s), distance driven (7616 m vs.
11997 m), average velocity (22.85 km/h vs. 31.60 km/h),
and maximum velocity (72.00 km/h vs. 91.25 km/h). Nota-
bly, the Al-generated cycle has a higher share of time spent
at a stop (27.08% vs. 17.80%).

The Al driving cycle and the NEDC have a similar du-
ration (1200 s vs. 1180 s) and a relatively close share of
idling (27.08% vs. 23.70%). However, the other parameters
are lower in the Al cycle compared to the NEDC: average
velocity (22.85 km/h vs. 33.60 km/h), maximum velocity
(72.00 km/h vs. 120 km/h), and distance driven (7616 m vs.
11017 m). This is primarily due to the NEDC’s purpose of
simulating both urban and extra-urban driving conditions.
Additionally, the velocity courses differ, as the NEDC is
a synthetic cycle composed of straight lines that correspond
to the vehicle traveling at a constant velocity or with con-
stant acceleration and deceleration.

The comparison between the Al-generated cycle and the
WLTC is relevant, considering the widespread use of the
latter in vehicle homologation. The Al-generated cycle
exhibits significantly lower velocities, with average (22.85
km/h vs. 46.50 km/h) and maximum (72.00 km/h vs.
131.30 km/h). Similarly, the total time and distance traveled
are shorter (1200 s vs. 1800 s and 7616 m vs. 23,250 m).
On the other hand, the time share of the vehicle stop is
higher in the Al-generated cycle than in the WLTC cycle
(27.08% vs. 12.6%). It should be emphasized, however,
that the WLTC simulates various driving conditions, not
only urban, but also extra-urban and highway scenarios.

The similarities between the Al-generated driving cycle
and standard cycles, particularly those that represent typical
urban conditions (such as JC08 and UDDS), indicate that
the Al-generated cycle effectively simulates real-world
driving scenarios. Furthermore, these similarities reduce the
risk that the developed driving cycle would be incompatible
with testing equipment used for standard cycles.

From a broader perspective, the observed similarities
and differences between the Al-generated cycle and the
considered standard cycles could have significant practical
implications. The similarities support the validity of exist-
ing standard cycles, despite evolving traffic conditions and
advancements in automotive technology. However, even
though standard cycles are benchmarks for policy frame-
works and vehicle development, they may fall short in
being responsive to some driving habits. Al applications
can, in this regard, help in the development of driving cy-
cles appropriate for given areas, conditions, or types of
vehicles, thereby improving the relevance of the testing
outcomes. Driving cycles based on local empirical data can
capture the dynamics of vehicle performance, emissions,

and fuel consumption during actual driving conditions
much better than the existing standardized cycles. The ad-
aptation of Al methodologies to generate custom cycles for
various driving environments, such as rural, mountainous or
congested traffic, is a promising future direction. Insights
gained from these cycles, which accurately reflect actual
traffic conditions, can complement the general data ob-
tained from standardized driving cycles.

3.4. Study limitations

The resulting driving cycle can be considered a suffi-
cient representation of the modeled vehicle motion condi-
tions. It should be noted that this study aimed to investigate
the practical aspects of using Al in developing drive cycles,
rather than creating an ideal drive cycle for certain applica-
tions, such as emissions testing. Having said that, the au-
thors of this paper identified several areas for improvement.

Firstly, the data collection stage could be expanded in
quantitative terms, which would positively impact the
quality of the resulting drive cycle. Further, the conditions
for collecting empirical data could be specified more pre-
cisely: for instance, by designating a single route, selecting
specific times of the day, involving various drivers and
vehicles, etc. Moreover, the equipment used in the road
tests was basic, allowing only the recording of fundamental
parameters from the OBD system at a fairly low frequency
(1 Hz). With current technical advancement, it is possible to
carry out tests that include emission measurements using
PEMS, although probably large-scale studies of this type
would not be economically justified.

Secondly, at the stage of generating the driving cycle, it
would have been beneficial to further refine the velocity
profile to obtain driving pattern values even closer to those
characterizing all samples from the road tests. In this re-
spect, the authors decided that the obtained results were
acceptable and decided not to pursue further enhancements.
Additionally, more driving pattern parameters could be
included, along with those related to acceleration.

Thirdly, the developed driving cycle should be verified
on a chassis dynamometer in terms of its feasibility and
subsequently validated on the basis of pollutant emission
and fuel consumption results in road tests, i.e. RDE, as well
as in standard cycles.

3.5. Precision of commands given to Al

While working on the driving cycle, the authors gained
experience in cooperation with Al software. The key issue
that determined the efficiency of the process and the quality
of the results was the precision of the formulated com-
mands. All user intentions had to be articulated clearly and
precisely, e.g. “Create a new combined speed profile using
different speed sections with adjacent idle time sections in
between. Take into account the following target parame-
ters: total duration 1200 s, average speed 24.82 km/h, max-
imum speed 74.61 km/h, percentage idle time 28.84%".

In the initial iterations of developing the driving cycle,
some inconsistencies appeared. For example, one version of
the cycle began and ended with a vehicle velocity different
from zero, which is rarely used from the point of view of
practical implementation of the cycle on a chassis dyna-
mometer (e.g. the non-standard Autobahn cycle). For this
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reason, the program received an additional line of command
to ensure the cycle started and ended with a few seconds of
engine idling with zero velocity: “Add 5 seconds idling at
the beginning and at the end of the cycle”.

As with natural language processing used for creating
images or videos, a single prompt may provide a complete-
ly different driving cycle, even when based on the same set
of empirical data. Therefore, it is difficult to discuss the
repeatability of the results in a strict sense. However, the
proposed procedure allows for reproducibility of the results,
understood as obtaining a set of similar driving cycles with
driving pattern parameters close to the target values.

3.6. Uncertainty of Al-derived results

An important aspect of working with Al is the concern
about the uncertainty of the results obtained using uncon-
trolled ‘hidden’ internal algorithms of such tools. This
phenomenon is called the 'Al black box problem' [14],
which refers to the lack of transparency or the limited
transparency in how machine learning systems process the
inputs through complex algorithms and generate outputs.
As aresult, it may be difficult or impossible to understand
how the Al tool reached its conclusions. This issue is be-
coming increasingly important, not only in technology but
also in fields such as healthcare, safety, and security [32].

However, the Al black box problem is of lesser concern
in this study for two reasons. Firstly, the Al tool used trans-
lates natural language commands into explicit Python code,
which is fully visible and can be independently inspected
and verified by the user. This allows for rigorous checking
of the code correctness before execution, mitigating con-
cerns related to hidden algorithmic processes. Additionally,
the primary criteria for the driving cycle validity are its
empirical representativeness and practical applicability in
dynamometer testing, rather than the internal workings of
the Al. To safeguard accuracy, the Al-generated driving
cycle was compared with real traffic data and standard
driving cycles. This confirmed that — theoretically — the
cycle reliably reflects urban driving conditions. The final
proof of the cycle adequacy will be the empirical testing of
pollutant emissions and fuel consumption, which is planned
(see section 3.7). Thus, the combination of code transparen-
cy and empirical verification addresses the ‘black box’
concerns in this study context.

3.7. Future perspectives

The approach outlined in this paper, along with the case
study example, does not comprehensively cover this broad
subject. There are many directions for further research in
this field, the prospects of which have opened up with the
rapid development of Al in recent years.

First and foremost, the presented Al-enhanced approach
for driving cycle development requires empirical validation.
The authors plan to utilize the developed cycle to conduct
tests on pollutant emissions and fuel consumption on
a chassis dynamometer. This will involve comparing the
results with those obtained using standard urban driving
cycles. Such testing would provide evidence for the practi-
cal applicability and accuracy of the Al-enhanced develop-
ment approach — a critical validation step to confirm the
cycle's suitability for regulatory and research purposes.

The authors believe that the optimal way for Al to assist
in creating driving cycles would be to produce entirely
artificial velocity courses that fully meet the criteria and
requirements set by researchers. According to the experi-
mental data from road tests, the primary goal would be to
ensure that every driving pattern parameter selected has the
same value for the developed cycle and the set of experi-
mental data. Furthermore, the ability to generate these kinds
of driving cycles within a short timeframe would make it
possible to introduce the idea of testing a vehicle's fuel
consumption and pollutant emissions on a chassis dyna-
mometer under random or pseudo-random conditions. This
is in line with the stochastic approach to evaluating vehicle
performance.

4. Summary and conclusions

This study explored the potential application of Al tools
to generate driving cycles, which are essential for assessing
pollutant emissions and fuel consumption in passenger
vehicles on a chassis dynamometer. This theoretical con-
cept was illustrated through a case study focused on an
urban driving cycle. The Al tool employed was based on
software that utilizes natural language processing to convert
user commands into programming code. The resulting driv-
ing cycle was generated according to similarity criteria of
several driving pattern characteristics, namely: average
vehicle velocity, maximum vehicle velocity, and the time
share of vehicle stop with the engine idling.

In summary, the following conclusions and observations
can be drawn from this study:

— The developed driving cycle demonstrated the feasibil-
ity of using Al tools in developing driving cycles

— Al-driven natural language processing tools are efficient
and convenient for driving cycle development, though
they do have certain constraints and challenges for be-
ginners

— Data processing using Al tools significantly speeds up
the development of driving cycles

— Precise command formulation is essential when using
Al tools, as vague instructions may result in inaccurate
outcomes
— The proposed method allows for the creation of a wide
variety of driving cycles for light vehicles, motorcycles,
and heavy vehicles, while accommodating different traf-
fic scenarios, including urban, extra-urban, and motor-
way conditions

— Further development work on the proposed general
approach is needed, mainly for the empirical verifica-
tion of pollutant emissions and fuel consumption based
on these driving cycles.

While the full potential and operational rules of Al have
yet to be thoroughly explored, it is reasonable to assume
that driving cycle development will benefit greatly from its
application in the future. It can significantly enhance the
processing of large volumes of road test data, allowing for
the generation of driving cycles that accurately reflect spe-
cific road conditions. Additionally, it supports the idea of
conducting chassis dynamometer tests with randomly se-
lected driving cycles following a stochastic approach.
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Nomenclature

ADAC  Allgemeiner Deutscher Automobil-Club LLM large language model

Al artificial intelligence NEDC  New European Driving Cycle

CADC  Common Artemis Driving Cycles OBD on-board diagnostics

CLTC  China Light-duty Vehicle Test Cycle PEMS  portable emission measurement systems

FTP Federal Test Procedure RDE real driving emissions

GPS global positioning system SFTP Supplemental Federal Test Procedure

HWFET Highway Fuel Economy Test UDDS  Urban Dynamometer Driving Schedule

JC Japan Cycle WLTC  Worldwide Harmonized Light Vehicle Test Cycle
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