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Enhancing driving cycle development using artificial intelligence 
 
ARTICLE INFO  In recent years, artificial intelligence (AI) has found application in numerous technical areas, including the 

automotive research and development sector. This paper considers the use of AI tools for the development of 

driving cycles for testing vehicles on a chassis dynamometer. The above idea was investigated on the example of 
a driving cycle simulating the use of a passenger car in urban conditions. The empirical data were collected 

during vehicle road tests in real traffic and then processed statistically by determining the values of selected 

driving pattern characteristics. Sections of vehicle velocity courses (‘micro-trips’) were selected and combined 
into a driving cycle representative of the road conditions prevailing during road tests. Processing of empirical 

data and combining velocity sections into a driving cycle was performed using AI-enhanced software utilizing 

large language models that convert user commands in natural language into Python code. The developed 
driving cycle was compared with selected standard urban driving cycles in terms of the values of driving pattern 

characteristics. 
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1. Introduction 
The most significant negative impacts of combustion 

engines on the environment include exhaust emissions, 

which contain substances that are toxic to living organisms 

and contribute to climate change [13]. Additionally, the 

combustion of fossil fuels leads to the depletion of non-

renewable natural resources [16]. Growing awareness of 

these threats has sparked actions against environmental 

degradation. They were first undertaken in the field of 

combustion engine applications in motor vehicles, both 

light- and heavy-duty, primarily due to their widespread 

use. Over the past few decades, significant progress has 

been made in this area, thanks in part to the development 

and validation of effective methods for testing pollutant 

emissions [22]. 

To ensure consistent testing conditions for vehicles, 

standardized test procedures are necessary. In the case of 

light vehicles, such as passenger cars and delivery vans 

(which are categorized according to relevant regulations), 

these tests are conducted under conditions that simulate 

traction operation. For metrological reasons, testing is car-

ried out in laboratories using chassis dynamometers [1, 9, 

24]. A crucial element of the dynamometer testing method-

ology, which connects the testing conditions with real driv-

ing performance, is the driving cycle [9, 11]. 

A ‘Driving cycle’ refers to a predefined sequence of ve-

hicle velocity as a dependence of time, designed to replicate 

real-world driving patterns for testing purposes, typically 

related to emissions or fuel efficiency [3, 9, 11, 20]. Driv-

ing cycles can be divided into two categories [11]: 

1. Standard cycles, which are recognized by international 

homologation regulations (e.g. WLTC, FTP-75, UDDS 

(FTP-72), HWFET, SFTP US06, SFTP SC03, NEDC, 

JC08, 10-15 Mode and CLTC) 

2. Special cycles, which are created for specific scientific, 

research, and development purposes (e.g. CADC (Ar-

temis), Autobahn, ADAC Highway Cycle, PIMOT CT, 

UT, RT, HT). 

To date, several hundred driving cycles have been de-

veloped globally [3, 11]. The vast number of cycles can be 

attributed to the diverse traffic conditions they simulate, 

such as urban, rural, motorway, and expressway driving, as 

well as traffic congestion. Additionally, the development of 

cycles that are representative of specific geographical areas, 

such as countries, regions, or even cities, has contributed to 

the increasing number of driving cycles. This growth is 

further driven by advancements in the scientific foundations 

and methodologies used to create these cycles. 

The representativeness of driving cycles relative to the 

actual traffic conditions they aim to simulate is influenced 

by four main factors [5]: 

1. Quality and quantity of empirical data obtained from the 

vehicle road test 

2.  Methodology used to develop the driving cycle 

3.  Selection of driving pattern parameters that serve as 

criteria for the driving cycle's compliance with actual 

empirical data 

4. Duration of the driving cycle. 

As for the stage of collecting empirical data, currently 

most researchers utilize information from the vehicle's On-

Board Diagnostics (OBD) system [19], and devices based 

on Global Positioning System (GPS) technology [28]. 

These tools allow for conducting low-cost, large-scale road 

tests, with multiple vehicles and/or drivers, providing an 

extensive dataset for further analysis. Additionally, the 

scope of these road tests can be expanded to include pollu-

tant emission measurement using Portable Emission Meas-

urement Systems (PEMS) [25] and visual recordings of 

driver behavior or the vehicle's surroundings. 

Regarding the second factor, methods for developing 

driving cycles can be categorized into two main groups: 

deterministic and stochastic [8, 27], with further subdivi-

sions according to minor methodological nuances. 

The most commonly utilized deterministic approach is 

the trip-based method, where each vehicle trip recorded 

during data collection can be selected as a representative 

driving cycle using criteria based on the similarity of driv-
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ing pattern parameters, such as average velocity or average 

acceleration. This method is repeatable, generating the 

same driving cycle each time for the same input data and 

similarity criteria. 

The primary stochastic methods include the Markov 

chain-Monte Carlo method and the micro trip method [30]. 

In the first one, the velocity course of the driving cycle is 

generated artificially through a detailed analysis of road test 

data. Velocity and acceleration matrices are created along 

with the probabilities of specific states defined by velocity 

and acceleration. The order of these states is then selected 

using a pseudo-random Monte Carlo method [15, 30]. In 

the micro trip method, all recorded velocity courses from 

road tests are divided into micro trips by isolating from 

each velocity course individual sections that cover the vehi-

cle's movement: starting from a complete stop, traveling at 

a non-zero velocity, braking to a stop, and the subsequent 

period of time when the vehicle remains stationary. Then, 

the sections are selected and connected in a quasi-random 

manner until the assumed total cycle time is reached [8]. 

Additionally, microtrips can be grouped into clusters based 

on common features, typically utilizing two or three select-

ed parameters [31]. The main advantage of these stochastic 

methods is that the generated driving cycle is not identical 

to any samples recorded during empirical tests. Conse-

quently, a different driving cycle can be obtained each time, 

even with the same input data.  

Since pollutant emissions and fuel consumption of vehi-

cle engines are exclusively tied to the conditions under 

which the vehicle is tested, meaning a specific driving cycle 

with a defined velocity course, it becomes essential to es-

tablish criteria for assessing these velocity courses. In prin-

ciple, the basis for quantitative assessment should be nu-

merical estimates [33]. For a specific time course of veloci-

ty, these numerical estimates are referred to as 'driving 

pattern parameters' or ‘zero-dimensional characteristics’ [2, 

7, 20]. The quality of these parameters is determined by 

their effectiveness for a particular application. 

While some driving pattern parameters, such as average 

and maximum velocity, average positive and negative ac-

celeration, and the share of driving and standing time, are 

widely recognized, there is no consensus on the best set of 

parameters to describe vehicle velocity patterns effectively. 

Numerous examples of driving pattern parameters can be 

found in the extensive literature on the topic [3, 4, 27]. To 

ensure that the developed driving cycle accurately repre-

sents the simulated road conditions, driving pattern parame-

ters must be determined and compared for the driving cy-

cle’s velocity course and the entire set of velocity samples 

from road tests [7, 27]. The above criterion is considered to 

be fulfilled if the values of the driving pattern parameters in 

both scenarios are similar and if the fuel/energy consump-

tion and pollutant emissions of a given vehicle during nor-

mal use align with those observed in the driving cycle on  

a chassis dynamometer. 

The duration of the driving cycle is also an important 

factor [12]. Long cycles can be costly to conduct and may 

exceed the capabilities of laboratory equipment, such as the 

capacity of exhaust gas bags, while shorter cycles may 

increase the measurement uncertainty. In practice, the dura-

tion of the driving cycle depends on the developer, as there 

is no consistent, recognized methodology in this field. 

Many of the common driving cycles are typically around 20 

minutes long [27]. 

In recent years, artificial intelligence (AI) has found ap-

plication in numerous technical fields, including automotive 

research and development. AI is a general term that encom-

passes several specific domains, such as machine learning, 

fuzzy logic, computer vision, evolutionary computing, and 

neural networks. The scientific literature highlights the 

application of certain AI features in the context of develop-

ing driving cycles. For example, Jia et al. [17] proposed  

a new method for generating driving cycles for heavy-duty 

vehicles using the Markov Chain method together with an 

average velocity-based matching algorithm. Mostashar-

shahidi et al. [23] examined the impact of learning-based 

AI algorithms on constructing driving cycles for off-road 

vehicles, namely agricultural tractors. Sankar et al. [29] 

employed a constrained genetic algorithm to optimize the 

vehicle velocity when creating a driving cycle oriented 

towards fuel consumption and driver comfort. Qiu et al. 

[26] demonstrated a data-driven, recurrent neural network-

based method to develop driving cycles for light-duty vehi-

cles in Beijing that simulate actual driving patterns. Gebisa 

et al. [10] utilized a neural network and principal compo-

nent analysis to create a driving cycle for passenger cars 

using real-time data from Addis Abeba. Londoño et al. [21] 

proposed a methodology to identify the most representative 

motorcycle driving patterns across various topographies, 

taking into account factors like elevation above sea level 

and slope variations, using AI techniques such as support 

vector machines and clustering. 

The purpose of this paper is to demonstrate the feasibil-

ity of using AI tools based on natural language processing 

to develop driving cycles. A case study of a driving cycle 

designed to simulate urban traffic conditions for a passen-

ger car is presented. The cycle was generated based on 

empirical data collected from road tests of a vehicle in real 

traffic. The velocity course constituting the driving cycle 

was generated using the micro-trip method, where individ-

ual velocity sections were selected and compiled by AI. 

Finally, the developed driving cycle was compared with 

selected standard urban driving cycles in terms of the val-

ues of driving pattern characteristics. 

2. Materials and methods 

2.1. Research framework 

The subsequent section outlines the research framework 

of this study. Section 2.2 provides an overview of the col-

lection of road traffic data, including the technical specifi-

cations of the vehicle and the test equipment used. Section 

2.3 introduces the main methodological assumptions re-

garding the procedures adopted for processing empirical 

data to construct the driving cycle, the selection of driving 

pattern characteristics as criteria for the representativeness 

of the developed driving cycle, and the duration of the cy-

cle. Finally, section 2.4 describes the AI-based software 

that supports the development of the driving cycle. 
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2.2. Experimental data collection 

Road tests were conducted to gather statistical data on 

vehicle driving under the urban conditions considered, 

which later served as the foundation for developing a repre-

sentative driving cycle. The tests were conducted in War-

saw. To account for the random nature of the vehicle driv-

ing conditions, no specific route or time of day was desig-

nated. The same driver operated the vehicle throughout the 

tests. The methodology involved having the driver follow 

another randomly selected road user, thereby replicating 

their driving style. 

The object of the road tests was a city passenger car –  

a hatchback from segment B, equipped with a spark-

ignition combustion engine. Figure 1 shows the test vehicle, 

while its technical specifications are presented in Table 1. 

 

Fig. 1. Vehicle used for the road tests 

 

Table 1. Technical specifications of the tested vehicle 

Parameter Unit Value 

Engine type  Spark-ignition 

Fuel  Gasoline 

Engine displacement 
volume 

cm3 1596 

Arrangement and number 

of cylinders 

 Inline, 4 

Fuel supply system  Indirect, multi-point injection 

Engine maximum power 

/at rotational speed 

kW/rpm 88/6000 

Engine maximum torque 

/at rotational speed 

Nm/rpm 152/4050 

Axle driven  Front 

Vehicle curb mass kg 1045 

Transmission type  Manual, 5-speed 

Production year  2011 

Emission class  Euro 5 

 

During road tests, the following driving parameters 

were recorded: 

– vehicle velocity [km/h] 

– engine rotational speed [rpm] 

– accelerator pedal relative position [%] 

– coolant temperature [°C] 

– engine relative load [%] 

– air mass flow rate [g/s] 

– air temperature in the intake manifold [°C] 

– air pressure in the intake manifold [kPa] 

– fuel pressure in the supply system [kPa] 

– voltage at the battery terminals [V]. 

These driving parameters were recorded directly from 

the vehicle’s OBD system using the TEXA OBD Log (Fig. 

2). The technical specifications of the device can be found 

in Table 2. 

 

Fig. 2. TEXA OBD Log used to collect data in road tests 
 

Table 2. Technical specifications of TEXA OBD Log 

Parameter Unit Value 

Processor  ARM 32-bit Contex-M3 

RAM kB 256 

Internal memory kB 2048 

Maximum data recording time h 90 

Maximum sampling frequency Hz 1 

Operating temperature range °C –40 to +85 

Software  IDC3 PC Suite 

PC interface  USB 1.0 cable 

Power supply in the vehicle  OBD 12 V connector 

 

A total of 250 samples, which contain data from indi-

vidual 'journeys', that is, periods of vehicle use from engine 

startup to shut down, were collected through road tests. The 

samples underwent preliminary screening, and those with  

a travel time exceeding 180 s and an average velocity of no 

less than 10 km/h were arbitrarily accepted for further anal-

ysis [19]. Such a selection criterion aimed to eliminate the 

few samples recorded during heavy traffic jams, treating 

such conditions as a distinct category of road traffic [6]. 

Ultimately, 242 vehicle velocity course samples that met 

the above-mentioned requirements were utilized as the 

basis for developing the driving cycle. 

The statistical parameters of the vehicle velocity courses 

for 242 qualified measurements were as follows: 

– total duration of all journeys – 214,067 s (almost 60 h) 

– average duration of a single journey – 885 s (almost 15 

min) 

– average driving velocity – 24.82 km/h 

– average maximum velocity – 74.61 km/h 

– average time share of stops – 28.84% 

– average number of stops – 15 

– average duration of a single stop – 16 s 

– average number of changes in the sign of the velocity 

derivative (in 100 s) – 2 

– average number of accelerations and decelerations in a 

single journey – 153. 
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2.3. Main methodological assumptions 

In this study, the driving cycle was developed using the 

micro-trip method. Each recorded trip was divided into 

sections that begin and end with the vehicle stopped, i.e. 

when the vehicle’s velocity is zero and the engine is idling. 

The idling time at the end of the micro trip was included. 

These sections were then randomly combined using the AI 

tool. The goal was for the values of the selected driving 

pattern parameters to closely match those of the entire data 

set from the empirical studies (section 2.2). 

The driving pattern parameters adopted as criteria for 

evaluating the driving cycle included: 

– average vehicle velocity 

– maximum vehicle velocity 

– time share of vehicle stops (with the engine idling). 

The number of criteria parameters was intentionally kept 

limited to avoid complicating the optimization task as-

signed to the AI software. Thus, no parameters related to 

acceleration and deceleration were introduced, assuming 

compliance of their values, as they were derived from actu-

al fragments of velocity courses from the road tests. 

The duration of the driving cycle was arbitrarily set at 

1200 s, which is similar to the timeframes of typical urban 

cycles, such as JC08, NEDC, or FTP-72 [3, 11]. The 

WLTC, currently in force in the European Union and some 

other countries, lasts 1800 s, but accounts for urban, rural, 

and highway driving conditions. In addition, it was as-

sumed that the driving cycle would begin and end with  

a short phase (5 s) of the vehicle being stopped with the 

engine idling. 

The work on the driving cycle proceeded gradually. Ini-

tially, an attempt was made to create a driving cycle for 15 

velocity samples. Once this procedure was mastered, the 

same process was repeated for all 242 samples from the 

empirical studies. Input commands were formulated for the 

AI software, and the resulting outputs were analyzed. This 

process provided the authors with valuable experience in 

working with the program, and the resulting observations 

and recommendations are included in the discussion section 

of this paper. 

The following order of commands was ultimately estab-

lished for the AI software: 

1. Load a CSV file containing empirical data 

2.  Calculate driving pattern parameter values for the em-

pirical data (target values) 

3.  Split the empirical data (velocity courses) into micro-

trips 

4. Compile micro-trips into a driving cycle, aiming to 

obtain driving pattern parameter values as closely 

aligned with the target as possible 

5.  Analyze the developed driving cycle 

6.  Iteratively improve the cycle until the new version 

achieves driving pattern parameter values closer to the 

target. 

Exemplary prompts entered into the program are in-

cluded in section 3.5 of the paper. 

In this study, the authors adopted a guiding principle 

that allowed the AI to find its own method for generating  

a synthetic driving cycle. Therefore, a specific data pro-

cessing algorithm was not imposed, and a degree of ran-

domness in the selection of micro-trips was intentionally 

allowed, with the only restrictions being those mentioned 

above. 

2.4. AI software 

The processing of empirical data and the compilation of 

velocity sections into a driving cycle were performed using 

the AI software Julius. This software is designed for analyt-

ical statistics, data science, and computations. It operates on 

the principle of leveraging large language models (LLMs), 

such as OpenAI's ChatGPT and Google Gemini, which 

convert user commands entered in natural language into 

Python code. For more information about Julius, please 

refer to [18]. 

The program features a straightforward interface that 

facilitates a dialogue with the user. Commands were en-

tered sequentially in a logical order (as outlined in section 

2.3), rather than as a single command that would generate  

a driving cycle instantly. 

3. Results and discussion 

3.1. The developed driving cycle 

Figure 3 illustrates the final version of the driving cycle 

that simulates urban traffic conditions, developed using the 

Julius AI software based on a complete set of 242 velocity 

samples recorded during empirical tests. 

 

Fig. 3. Vehicle velocity course in the developed driving cycle (AI Cycle) 

 

As can be seen in the graph, the vehicle velocity course 

reflects typical urban driving patterns. In urban areas, vehi-

cle velocity fluctuates, incorporating phases of acceleration, 

deceleration, and idling, which capture the stop-and-go 

nature of city driving. This variability is attributed to vari-

ous factors, including intersections controlled by traffic 

lights, traffic calming measures, high traffic volume, re-

duced velocity limits etc. Traffic lights not only cause vehi-

cles to stop, but also slow them down as drivers anticipate 

stopping. Similar effects arise from traffic calming 

measures such as speed bumps, raised intersections, and 

others, leading to deceleration before and acceleration fol-

lowing these obstacles. Furthermore, rapid changes in vehi-

cle speed are often influenced by the presence of numerous 

other road users. Finally, the peak velocities observed in the 

developed driving cycle are typical for urban conditions. In 

Polish cities, the velocity limit is 50 km/h in built-up areas, 

though this limit may vary based on road signs. Certain 
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road sections within cities also allow higher velocities, such 

as 70 km/h. 

The above-mentioned characteristic features of the de-

veloped velocity course distinguish it from the relatively 

smoother velocity patterns typical in rural areas and espe-

cially on highways (motorways/express roads) [6], which 

exhibit fewer sharp peaks and less frequent stops – often 

none at all. 

3.2. Comparison of the developed AI driving cycle with 

experimental data 

The selected driving pattern parameters were chosen to 

serve as the criteria of representativeness of the created AI 

driving cycle for the modeled traffic conditions. The values 

of these parameters were calculated and compared between 

the developed driving cycle and the complete set of velocity 

samples from the experimental data. The results are pre-

sented in Table 3. 

 
Table 3. Comparison of driving pattern parameters determined for the 

developed driving cycle and all samples collected during road tests 

Parameter Unit AI driving 

cycle  

All veloci-

ty samples 

Relative 

difference 

Time/average time s 1200 885 35.59% 

Average velocity km/h 22.85 24.82 –7.94% 

Maximum velocity km/h 72.00 74.61 –3.50% 

Time share of stop % 27.08 28.84 –6.10% 

 

The driving pattern parameters determined for the de-

veloped driving cycle and the experimental data showed no 

significant differences. The average vehicle velocity in the 

driving cycle was 1.97 km/h lower than in road tests, trans-

lating to a relative change of –7.94%. The share of idling 

time was 1.76% lower (–6.10%), and the maximum veloci-

ty was 2.61 km/h lower (–3.50%).  In terms of the duration 

of the developed cycle compared to the average time of  

a single trip during road tests, the difference is not signifi-

cant, as the cycle time was chosen arbitrarily. 

3.3. Comparison of the developed AI driving cycle with 

selected standard driving cycles 

Table 4 presents a comparison of selected parameters of 

the driving cycle obtained using AI with those of selected 

standard driving cycles: the Japanese JC08, American 

UDDS (FTP-72), European NEDC, and the global WLTC. 

Additionally, Figure 4 graphically compares the velocity 

courses of the developed driving cycle with those of the 

aforementioned standard cycles. 

 
Table 4. Comparison of selected parameters of the developed driving cycle 

and selected standard driving cycles [11] 

Parameter Unit AI 
driving 

cycle 

JC08 UDDS 
(FTP-

72) 

NEDC WLTC 
Class 

3-2 

Time/average time s 1200 1204 1372 1180 1800 

Distance traveled m 7616 8171 11997 11017 23250 

Average velocity km/h 22.85 24.40 31.60 33.60 46.50 

Maximum velocity km/h 72.00 81.60 91.25 120.00 131.30 

Time share of stop % 27.08 28.7 17.8 23.7 12.6 

 

The comparison indicates that the AI-generated driving 

cycle is the closest to the Japanese JC08. Both cycles exhib-

it a similar overall character of the velocity course (Fig. 4a), 

nearly the same duration (1200 s vs. 1204 s), and a compa-

rable idling time (27.08% vs. 28.70%). However, the AI 

cycle has a slightly lower average velocity (22.85 km/h 

 

 

 

 

 

Fig. 4. Comparison of vehicle velocity courses in the developed driving 

cycle (AI Cycle) with those of selected standard driving cycles: a) JC08, b) 

 FTP-72, c) NEDC, d) WLTC 
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vs. 24.40 km/h) and a lower maximum velocity (72.00 

km/h vs. 81.60 km/h). Consequently, the lower average 

velocity and cycle time result in a theoretically shorter 

distance traveled (7616 m vs. 8171 m). 

The sharp velocity peaks observed in the AI-generated 

driving cycle closely resemble those of the UDDS (Figure 

4b). However, the American cycle includes a section where 

the vehicle reaches a velocity exceeding 90 km/h. When 

comparing the parameters of the driving patterns, the AI-

generated cycle falls short of the UDDS in several areas: 

duration (1200 s vs. 1372 s), distance driven (7616 m vs. 

11997 m), average velocity (22.85 km/h vs. 31.60 km/h), 

and maximum velocity (72.00 km/h vs. 91.25 km/h). Nota-

bly, the AI-generated cycle has a higher share of time spent 

at a stop (27.08% vs. 17.80%). 

The AI driving cycle and the NEDC have a similar du-

ration (1200 s vs. 1180 s) and a relatively close share of 

idling (27.08% vs. 23.70%). However, the other parameters 

are lower in the AI cycle compared to the NEDC: average 

velocity (22.85 km/h vs. 33.60 km/h), maximum velocity 

(72.00 km/h vs. 120 km/h), and distance driven (7616 m vs. 

11017 m). This is primarily due to the NEDC’s purpose of 

simulating both urban and extra-urban driving conditions. 

Additionally, the velocity courses differ, as the NEDC is  

a synthetic cycle composed of straight lines that correspond 

to the vehicle traveling at a constant velocity or with con-

stant acceleration and deceleration. 

The comparison between the AI-generated cycle and the 

WLTC is relevant, considering the widespread use of the 

latter in vehicle homologation. The AI-generated cycle 

exhibits significantly lower velocities, with average (22.85 

km/h vs. 46.50 km/h) and maximum (72.00 km/h vs. 

131.30 km/h). Similarly, the total time and distance traveled 

are shorter (1200 s vs. 1800 s and 7616 m vs. 23,250 m). 

On the other hand, the time share of the vehicle stop is 

higher in the AI-generated cycle than in the WLTC cycle 

(27.08% vs. 12.6%). It should be emphasized, however, 

that the WLTC simulates various driving conditions, not 

only urban, but also extra-urban and highway scenarios. 

The similarities between the AI-generated driving cycle 

and standard cycles, particularly those that represent typical 

urban conditions (such as JC08 and UDDS), indicate that 

the AI-generated cycle effectively simulates real-world 

driving scenarios. Furthermore, these similarities reduce the 

risk that the developed driving cycle would be incompatible 

with testing equipment used for standard cycles. 

From a broader perspective, the observed similarities 

and differences between the AI-generated cycle and the 

considered standard cycles could have significant practical 

implications. The similarities support the validity of exist-

ing standard cycles, despite evolving traffic conditions and 

advancements in automotive technology. However, even 

though standard cycles are benchmarks for policy frame-

works and vehicle development, they may fall short in 

being responsive to some driving habits. AI applications 

can, in this regard, help in the development of driving cy-

cles appropriate for given areas, conditions, or types of 

vehicles, thereby improving the relevance of the testing 

outcomes. Driving cycles based on local empirical data can 

capture the dynamics of vehicle performance, emissions, 

and fuel consumption during actual driving conditions 

much better than the existing standardized cycles. The ad-

aptation of AI methodologies to generate custom cycles for 

various driving environments, such as rural, mountainous or 

congested traffic, is a promising future direction. Insights 

gained from these cycles, which accurately reflect actual 

traffic conditions, can complement the general data ob-

tained from standardized driving cycles. 

3.4. Study limitations 

The resulting driving cycle can be considered a suffi-

cient representation of the modeled vehicle motion condi-

tions. It should be noted that this study aimed to investigate 

the practical aspects of using AI in developing drive cycles, 

rather than creating an ideal drive cycle for certain applica-

tions, such as emissions testing. Having said that, the au-

thors of this paper identified several areas for improvement. 

Firstly, the data collection stage could be expanded in 

quantitative terms, which would positively impact the 

quality of the resulting drive cycle. Further, the conditions 

for collecting empirical data could be specified more pre-

cisely: for instance, by designating a single route, selecting 

specific times of the day, involving various drivers and 

vehicles, etc. Moreover, the equipment used in the road 

tests was basic, allowing only the recording of fundamental 

parameters from the OBD system at a fairly low frequency 

(1 Hz). With current technical advancement, it is possible to 

carry out tests that include emission measurements using 

PEMS, although probably large-scale studies of this type 

would not be economically justified. 

Secondly, at the stage of generating the driving cycle, it 

would have been beneficial to further refine the velocity 

profile to obtain driving pattern values even closer to those 

characterizing all samples from the road tests. In this re-

spect, the authors decided that the obtained results were 

acceptable and decided not to pursue further enhancements. 

Additionally, more driving pattern parameters could be 

included, along with those related to acceleration. 

Thirdly, the developed driving cycle should be verified 

on a chassis dynamometer in terms of its feasibility and 

subsequently validated on the basis of pollutant emission 

and fuel consumption results in road tests, i.e. RDE, as well 

as in standard cycles. 

3.5. Precision of commands given to AI 

While working on the driving cycle, the authors gained 

experience in cooperation with AI software. The key issue 

that determined the efficiency of the process and the quality 

of the results was the precision of the formulated com-

mands. All user intentions had to be articulated clearly and 

precisely, e.g. “Create a new combined speed profile using 

different speed sections with adjacent idle time sections in 

between. Take into account the following target parame-

ters: total duration 1200 s, average speed 24.82 km/h, max-

imum speed 74.61 km/h, percentage idle time 28.84%”. 

In the initial iterations of developing the driving cycle, 

some inconsistencies appeared. For example, one version of 

the cycle began and ended with a vehicle velocity different 

from zero, which is rarely used from the point of view of 

practical implementation of the cycle on a chassis dyna-

mometer (e.g. the non-standard Autobahn cycle). For this 
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reason, the program received an additional line of command 

to ensure the cycle started and ended with a few seconds of 

engine idling with zero velocity: “Add 5 seconds idling at 

the beginning and at the end of the cycle”. 

As with natural language processing used for creating 

images or videos, a single prompt may provide a complete-

ly different driving cycle, even when based on the same set 

of empirical data. Therefore, it is difficult to discuss the 

repeatability of the results in a strict sense. However, the 

proposed procedure allows for reproducibility of the results, 

understood as obtaining a set of similar driving cycles with 

driving pattern parameters close to the target values. 

3.6. Uncertainty of AI-derived results 

An important aspect of working with AI is the concern 

about the uncertainty of the results obtained using uncon-

trolled ‘hidden’ internal algorithms of such tools. This 

phenomenon is called the 'AI black box problem' [14], 

which refers to the lack of transparency or the limited 

transparency in how machine learning systems process the 

inputs through complex algorithms and generate outputs. 

As a result, it may be difficult or impossible to understand 

how the AI tool reached its conclusions. This issue is be-

coming increasingly important, not only in technology but 

also in fields such as healthcare, safety, and security [32]. 

However, the AI black box problem is of lesser concern 

in this study for two reasons. Firstly, the AI tool used trans-

lates natural language commands into explicit Python code, 

which is fully visible and can be independently inspected 

and verified by the user. This allows for rigorous checking 

of the code correctness before execution, mitigating con-

cerns related to hidden algorithmic processes. Additionally, 

the primary criteria for the driving cycle validity are its 

empirical representativeness and practical applicability in 

dynamometer testing, rather than the internal workings of 

the AI. To safeguard accuracy, the AI-generated driving 

cycle was compared with real traffic data and standard 

driving cycles. This confirmed that – theoretically – the 

cycle reliably reflects urban driving conditions. The final 

proof of the cycle adequacy will be the empirical testing of 

pollutant emissions and fuel consumption, which is planned 

(see section 3.7). Thus, the combination of code transparen-

cy and empirical verification addresses the ‘black box’ 

concerns in this study context. 

3.7. Future perspectives 

The approach outlined in this paper, along with the case 

study example, does not comprehensively cover this broad 

subject. There are many directions for further research in 

this field, the prospects of which have opened up with the 

rapid development of AI in recent years. 

First and foremost, the presented AI-enhanced approach 

for driving cycle development requires empirical validation. 

The authors plan to utilize the developed cycle to conduct 

tests on pollutant emissions and fuel consumption on  

a chassis dynamometer. This will involve comparing the 

results with those obtained using standard urban driving 

cycles. Such testing would provide evidence for the practi-

cal applicability and accuracy of the AI-enhanced develop-

ment approach – a critical validation step to confirm the 

cycle's suitability for regulatory and research purposes. 

The authors believe that the optimal way for AI to assist 

in creating driving cycles would be to produce entirely 

artificial velocity courses that fully meet the criteria and 

requirements set by researchers. According to the experi-

mental data from road tests, the primary goal would be to 

ensure that every driving pattern parameter selected has the 

same value for the developed cycle and the set of experi-

mental data. Furthermore, the ability to generate these kinds 

of driving cycles within a short timeframe would make it 

possible to introduce the idea of testing a vehicle's fuel 

consumption and pollutant emissions on a chassis dyna-

mometer under random or pseudo-random conditions. This 

is in line with the stochastic approach to evaluating vehicle 

performance. 

4. Summary and conclusions 
This study explored the potential application of AI tools 

to generate driving cycles, which are essential for assessing 

pollutant emissions and fuel consumption in passenger 

vehicles on a chassis dynamometer. This theoretical con-

cept was illustrated through a case study focused on an 

urban driving cycle. The AI tool employed was based on 

software that utilizes natural language processing to convert 

user commands into programming code. The resulting driv-

ing cycle was generated according to similarity criteria of 

several driving pattern characteristics, namely: average 

vehicle velocity, maximum vehicle velocity, and the time 

share of vehicle stop with the engine idling. 

In summary, the following conclusions and observations 

can be drawn from this study: 

– The developed driving cycle demonstrated the feasibil-

ity of using AI tools in developing driving cycles 

– AI-driven natural language processing tools are efficient 

and convenient for driving cycle development, though 

they do have certain constraints and challenges for be-

ginners 

– Data processing using AI tools significantly speeds up 

the development of driving cycles 

– Precise command formulation is essential when using 

AI tools, as vague instructions may result in inaccurate 

outcomes 

– The proposed method allows for the creation of a wide 

variety of driving cycles for light vehicles, motorcycles, 

and heavy vehicles, while accommodating different traf-

fic scenarios, including urban, extra-urban, and motor-

way conditions 

– Further development work on the proposed general 

approach is needed, mainly for the empirical verifica-

tion of pollutant emissions and fuel consumption based 

on these driving cycles. 

While the full potential and operational rules of AI have 

yet to be thoroughly explored, it is reasonable to assume 

that driving cycle development will benefit greatly from its 

application in the future. It can significantly enhance the 

processing of large volumes of road test data, allowing for 

the generation of driving cycles that accurately reflect spe-

cific road conditions. Additionally, it supports the idea of 

conducting chassis dynamometer tests with randomly se-

lected driving cycles following a stochastic approach. 
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Nomenclature 

ADAC Allgemeiner Deutscher Automobil-Club 

AI artificial intelligence 

CADC Common Artemis Driving Cycles 

CLTC China Light-duty Vehicle Test Cycle 

FTP Federal Test Procedure 

GPS global positioning system 

HWFET Highway Fuel Economy Test 

JC Japan Cycle 

LLM large language model 

NEDC New European Driving Cycle 

OBD on-board diagnostics 

PEMS portable emission measurement systems 

RDE real driving emissions 

SFTP Supplemental Federal Test Procedure 

UDDS Urban Dynamometer Driving Schedule 

WLTC Worldwide Harmonized Light Vehicle Test Cycle 
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