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Use of a digital twin to analyze the effect of graphene as a lubricant additive  

for diesel engines 
 
ARTICLE INFO  The effect of two graphene additives to engine oil on diesel engine efficiency was studied. The first additive was 

a commercially available additive based on graphene oxide (GO). The additive was tested on a small automotive 
diesel engine. The use of the additive concentration recommended by the manufacturer at 3% in the engine oil 

resulted in a reduction of the specific fuel consumption from 0.2% to 0.7%, depending on the engine operating 

conditions. The second additive, currently under development, was based on graphene nanoplatelets (GNP). The 
additive was tested on a medium-sized diesel engine in a truck. The use of the equivalent GNP concentration of 

0.1% resulted in a reduction of fuel consumption in the ESC test by 0.4%. Increasing the concentration of this 

additive to 0.2% GNP did not result in a further reduction in fuel consumption. Because the engine efficiency 
benefits resulting from the use of improved oils were close to the measurement uncertainties, the applicability of 

machine learning using engine on-board diagnostics (OBD) readings to analyze the impact of lubricant addi-

tives was investigated. The use of Random Forest, machine learning digital twins, was able to reproduce the 
OBD instantaneous fuel consumption with excellent accuracy. Further analysis with SHAPLEY values helped to 

identify the more important engine parameters that affected instantaneous fuel consumption.  
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1. Introduction 
Reducing mechanical losses in internal combustion en-

gines is crucial for enhancing efficiency and lowering emis-

sions. Engine oil properties significantly influence these 

losses [7, 9, 21]. Lower-viscosity oils can decrease hydro-

dynamic friction, improving fuel economy. However, they 

may also reduce oil film thickness, potentially increasing 

wear under certain conditions. To mitigate this, different 

additives to oil are employed to form protective tribofilms, 

reducing boundary friction and wear. Studies have shown 

that combining low-viscosity base oils with effective addi-

tives like molybdenum dithiocarbamate (MoDTC) can 

optimize the balance between friction reduction and com-

ponent protection, leading to improved engine performance 

and longevity. Unfortunately, MoDTC, which is a very 

effective friction modifier, is not used in diesel engines 

with the Diesel Particulate Filter (DPF) due to its harmful 

effect on the DPF [8, 22, 23].  

Recent advances in nanotechnology have introduced 

novel lubricant additives, among which graphene-based 

materials have gained considerable attention due to their 

outstanding tribological and thermal properties. Graphene 

oxide (GO) and graphene nanoplatelets (GNP) are among 

the most commonly investigated forms of graphene for 

lubricant applications. GO, with its oxygen-containing 

functional groups, offers good dispersibility in polar and 

non-polar base oils, enabling the formation of a stable sus-

pension and tribological film. On the other hand, GNPs – 

few-layer graphene structures with high surface area – 

demonstrate excellent mechanical strength, load-bearing 

capacity, and low shear characteristics, making them effec-

tive in reducing boundary friction and wear under high-load 

conditions [1, 3, 12, 15, 17, 18].  

Machine learning techniques have shown increased use 

in helping engine tests. They are able to find complex, 

nonlinear relationships in data that may be difficult to catch 

with traditional statistical methods. Machine learning can 

identify the importance of even those features that have  

a smaller impact on the output and take them into account 

in creating predictions [4–6, 10, 16, 19, 24]. The use of 

digital twins can reduce the number of costly experimental 

tests and help with the analysis of instantaneous variations. 

Engine transients, e.g. transients when the engine goes from 

one operation regime to another, are neglected in stationary 

tests but may contain relevant information on real driving 

conditions.  

In the current work, two graphene-based lubricant addi-

tives were investigated using diesel engine dynamometer 

tests. Since the expected fuel savings by using improved 

oils are almost the same as experimental test variability, 

instantaneous reading of the engine On-Board Diagnostics 

(OBD) and random Forest machine learning digital twins 

were used for a more detailed analysis of the effect of the 

lubricant additives. 

2. Tests of a commercially available graphene  

additive 
A commercially available additive with claims of gra-

phene was added to a SAE 5W-30 oil, fully synthetic, Low 

SAPS. TGA analysis suggests that the additive contains 

Oxide of Graphene (GO). It was not possible to determine 

the Graphene concentration in the additive. 3% in volume 
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of additive was added to the engine oil, as recommended by 

the supplier, for the engine tests. Due to the additive's rela-

tively lower viscosity, oil kinetic viscosities kV40 and 

kV100 were reduced by about 4%. See details in [11].  

An automotive 4-cylinder Diesel engine, 1.25 L, 66 kW, 

TCDI, Common Rail injection system, air cooling and EGR 

was tested on a dynamometer with controlled coolant and 

oil temperatures. The following OBD parameters were 

recorded at 5 Hz frequency: time, acceleration pedal posi-

tion, engine rotational speed, total fuel injection, coolant 

temperature, boost pressure, fuel pressure in the rail, ex-

haust temperature after DPF, and DPF filling. Potentially 

interesting parameters, such as injection timing, were not 

available via OBD on this engine. The dynamometer tests 

were done at two accelerator pedal positions: 100% and 

30%, and engine speeds: 2000 to 4000 rpm. The test se-

quence was: a) baseline oil, b) addition of 3% VV of the 

graphene-based additive, as recommended by the additive 

supplier. Before pouring the additive, the same oil volume 

was removed from the crankcase to maintain the engine oil 

volume constant. Maximum engine torque and power in-

creased 0.8% and 0.4% with the oil additive, but as fuel 

consumption also showed a small increase with the addi-

tive, BSFC decreased on average by only 0.2% [11].  

Tests for oil without an additive and with the additive 

were repeated at least 3 times. The repetitions were always 

done on different days. For simplicity, the dataset was de-

fined as sequential time, including only the OBD acquisi-

tions. Figure 1 shows the test sequence with the reference 

oil (without an additive). Figure 2 shows the map of engine 

rotational speed and pedal position covered during the tests. 

 

 

Fig. 1. Test sequence with the reference oil: (a) complete sequence,  

 (b) zoom on the last replications 

 

Fig. 2. Map of engine rotational speed and pedal position along the tests 

  with the reference oil 

 

Pearson and Spearman correlations were calculated to 

select the variables used as input to train the digital twin. 

Pearson assumes a linear numerical regression, while 

Spearman is more flexible and calculates the correlation 

based on the variable ranking. Table 1 shows the Pearson 

correlation between variables, and Table 2 shows the Pear-

son and Spearman correlation factors for the instantaneous 

fuel consumption. Pearson and Spearman's rankings are 

similar, but notice that some differences exist. See discus-

sion of Shapley values in the MDD case ahead.  

 
Table 1. Pearson correlation coefficients between the variables 

 

 

Table 2. Pearson and Spearman correlations to the instantaneous fuel 

consumption 

 

 

The correlation coefficients show some obvious rela-

tions, fuel consumption is directly dependent on fuel injec-

tion, boost pressure, etc. To verify the digital twin's capaci-

ty to make predictions with as few parameters as possible, 

the following parameters were selected to predict the in-

stantaneous fuel injection: 

– inputs: engine rotational speed, pedal position, cooling 

temperature 

– output, “target” in the machine learning jargon: fuel 

injection or fuel consumption, the latter calculated from 

the OBD fuel injection and engine rotational speed. 
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The machine learning digital twin is created (“trained” 

in the AI jargon), having variables for input and, in our 

case, one for output to be predicted (Fig. 3–5). 

 

Fig. 3. Scheme of the machine learning approach used in this work (repro-
 duced from [19]) 

 

Fig. 4. Scheme of the machine learning Random Forest model (reproduced  

 from [19]) 

 

 Fig. 5. Scheme of the Random Forest model (reproduced from [19]) 

 

In all replications, the model correlation between the re-

al ECU instantaneous fuel injection and the model was very 

good, with a coefficient of correlation R
2
 of almost 1.0 and 

an accumulated error smaller than 0.1%. See two examples 

in Fig. 6 and Fig. 7. Such good correlation was already 

verified in the author's previous publications, even for tran-

sient emission and RDE cycles [14]. More robust validation 

is whether the model trained on a given day can predict the 

test on another day, which was also obtained with the de-

veloped digital twin. Figure 7 shows that the model predic-

tion for the 2024Feb06 test using the model trained with the 

baseline 2023 dataset showed an almost perfect correlation, 

R
2
: 0.9994, and the accumulated error on accumulated fuel 

injected along the replication was lower than 0.1%. The 

time frames in Fig. 6–9 refer to the respective test replica-

tion (06_02 and 07_02). They are part of the complete test 

sequence shown in Fig. 1, but with time starting at the start 

of the respective replication. 

 

Fig. 6. Digital twin predictions for the reference test 

 

As already mentioned, using the dynamometer stand 

measurements, BSFC reduction was almost within the ex-

perimental uncertainties [11]. To investigate if the use of 

digital twins could provide a more resolute comparison, the 

following method was carried out: 

– instantaneous fuel consumption was calculated using the 

fuel injection and engine rotational speed 
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Fig. 7. Digital twin predictions for test with 3% additive 

 

 

Fig. 8. Prediction for the 06Feb2024 replication with the model trained  
 with Dec2023 replications 

 

– 2 digital twins were trained for tests done on consecu-

tive days, one with the baseline oil, and the other with 

the addition of the 3% V/V graphene additive. Both 

models were able to fully reproduce the respective da-

tasets, as discussed before 

– then, the model trained with the baseline oil was used to 

predict the test with the graphene additive and vice versa.  
 

      

        

Fig. 9. Tentative to use the digital twins to predict the influence of graphene on instantaneous fuel consumption: (a) and (c) reference oil test, model 

 trained with graphene; (b) and (d) test with graphene, model trained with the baseline oil 
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The expectation was that the model trained with gra-

phene would reduce the fuel consumption when applied to 

the baseline oil, and the opposite when the baseline oil 

model was applied to the test with graphene. However, the 

results were inconclusive. While the model trained with 

graphene reduced 1.24% the fuel consumption of the base-

line test, the use of the baseline oil model showed almost no 

change when applied to the test with graphene. See Fig. 9. 

3. Tests of a GPN-based additive 
After testing the GO additive on the small diesel engine, 

the project moved to the use of an in-house graphene-

developed additive based on graphene nanoplatelets (GNP) 

with a higher graphene concentration. Table 3 and Fig. 10 

show the GNP main characteristics. See details in [20]. The 

higher graphene concentration allowed a reduction in the 

additive volume, leading to a lower impact on the kinematic 

viscosity of less than 1%. 

 
Table 3. GNP characterisation 

Characteristic Unit Mean Q90 

Number of layers – <N>2D (nm) – 9 11 

Surface density of point defects – 

nD 

1010 cm–2 2.8 4.3 

Lateral size – La nm 71.1 99.4 

D to G peak intensity ratio (ID/IG) – 0.28 0.44 

 

Fig. 10. GNP number of layers, adapted from [20] 

 

A Medium-Duty Diesel (MDD) engine of 4.8 L, 4-cyl., 

136 kW and 700 Nm was used in the tests. Both the DPF 

sensor and the coasting strategies were turned off during the 

tests. The dynamometer tests were carried out in the follow-

ing sequence: a) baseline oil, b) addition of the equivalent 

of 0.1% graphene, c) another 0.1%, reaching a total of 0.2% 

of graphene. The test cycle followed the European Station-

ary Cycle (ESC) – see Fig. 11. Four other operation re-

gimes, at engine rotational speed of maximum power and 

25, 50, 75 and 100% of load were added to the test program 

for completeness. 

On the combined ESC values, 0.4% and 0.3% fuel sav-

ing were observed with 0.1% and 0.2% graphene additives, 

respectively – see [11]. The possibilities of using AI in the 

results obtained in MDD tests were initially investigated in 

[14]. Digital twins were able to reproduce the OBD values 

accurately. In the current work, an improved digital twin 

and the calculation of SHAP values were used to under-

stand better the potential and limitations of using AI on fuel 

consumption tests. 

 

Fig. 11. ESC cycle 

 

On the ESC cycle, the engine must be operated for 2 

minutes at each regime point. At each point, the first 20 

seconds are neglected to allow engine stabilization. But 

even after stabilization, it is not uncommon that some en-

gine parameters present instantaneous variations. For ex-

ample, Fig. 12 shows turbo pressure variations, which may 

affect instantaneous power, fuel consumption etc. Figure 13 

shows in more detail step 11, neglecting the first 20 seconds 

as defined in the ESC procedure. The step average is 1791 

hPa and 7.0 kg/h, respectively, for turbo pressure and fuel 

consumption. However, it can be noted that there is lower 

fuel consumption when the P_turbo is higher than the aver-

age and higher fuel consumption when the P_turbo is lower 

than the average. Such a correlation, although small, is not 

considered if only the average values are considered. 

 

Fig. 12. OBD turbo pressure and pedal position along a tests sequence;  

 notice some instantaneous variations even on stationary conditions 

 

Table 4 shows the four higher Pearson correlation coef-

ficients used as input to train the digital twin. These chosen 

parameters are engine speed, coolant temperature, turbo-

charger pressure and calculated torque, so-called rpm, 

Tcool, P_turbo and CalcTorque, respectively. No signifi-

cant difference was found in the correlation coefficients 

between the baseline oil and the ones with graphene addi-

tives. 
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Fig. 13. Turbo pressure and fuel consumption for step 11 – see Fig. 12 

Some of the parameters may indeed be an indirect con-

sequence of fuel consumption. For the carried-out tests, 

with the engine already hot, the engine cooling temperature 

was probably affected by the torque (and not vice versa). 

The higher torques caused, of course, higher fuel consump-

tion. See discussion ahead. 

The developed digital twins were able not only to re-

produce the test used for training accurately but also to 

predict the instantaneous fuel consumption of a different 

replication – see Fig. 14–18. 

 

 

 
Table 4. Pearson correlation coefficients for the four parameters used to train the digital twin 

 

        

Fig. 14. RF digital twin for the baseline oil replication #18 

         

Fig. 15. RF digital twin, trained with replication BL #19, for the BL #18 

           

Fig. 16. RF digital twin trained with replication #38 with 0.1% GNP 
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Fig. 17. RF digital twin, trained with replication 01% #36, for the 0.1% #38 

       

Fig. 18. RF digital twin, trained with replication 0.2% #44 

 

4. Use of SHAP values to analyze the digital twin 

model 
The correlation factor calculations were carried out in 

the datasets and do not necessarily reflect the impact on the 

model output. SHAP (SHapley Additive exPlanations) is  

a method used to explain how machine learning models 

make predictions. It is based on ideas from cooperative 

game theory, especially Shapley values, which fairly meas-

ure each player’s contribution in a group. In machine learn-

ing, SHAP looks at how important each feature (or input) is 

to a specific prediction. It shows how much each feature 

pushes the prediction higher or lower by comparing the 

result with and without that feature [2, 13]. 

SHAP helps explain both individual predictions (local 

explanations) and overall model behavior (global explana-

tions). This is especially useful for complex models like 

neural networks or ensemble methods, where understanding 

how they work is often difficult. Because SHAP adds up all 

feature contributions to match the model’s output, it makes 

model decisions easier to trust and understand [2, 13]. 

Figure 19 presents a SHAP summary plot, which illus-

trates the impact of each feature on the model output across 

the entire dataset. Each point in the plot represents a SHAP 

value for an individual prediction, showing how much that 

feature contributed to increasing or decreasing the predic-

tion. 

The features are ranked vertically by their overall im-

portance (mean absolute SHAP value), with the most influ-

ential features at the top. In this case, Pedal%, P_turbo, and 

rpm are the most impactful features in predicting the model 

output. The color of each point represents the original value 

of the feature for that observation, ranging from low (blue) 

to high (red). For example, for Pedal%, high feature values 

(in red) are generally associated with a strong positive im-

pact on the model output, whereas lower values (in blue) 

tend to have a negative contribution. 

 

Fig. 19. SHAP Summary Plot for Feature Impact and Direction 
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The horizontal dispersion of points for each feature re-

flects the range of SHAP values and thus the variability in 

that feature’s influence. Features like Pedal% and P_turbo 

show wide distributions, indicating that their impact on 

predictions varies significantly across the dataset. This 

visualization helps to understand not only which features 

are most important but also how their values influence the 

model's behavior, enabling better transparency and inter-

pretability of the predictions. 

Figure 20 shows the SHAP bar plot for the baseline test. 

The plot summarises the average impact of each feature on 

the model’s predictions, measured by the mean absolute 

SHAP value. Pearson and Spearman correlations are also 

shown for comparison. The Pedal% is the most influential 

feature, followed by P_turbo and rpm, indicating their 

strong contribution to model output. Other features like 

InjCtl, CalcTorque, and tAir have a moderate influence, 

while P_Oil, Tcool, and Patm contribute minimally. This 

plot provides a clear overview of the importance of global 

features, supporting model interpretation and validation. 

Notice that several parameters with high Pearson and 

Spearman correlation have little or no impact on the digital 

twin. A remarkable example is the CalcTorque with corre-

lation factors close to 0.9, but very little effect on the model 

output. 

 

Fig. 20. Global Feature Importance Based on SHAP Values 

5. Discussion and conclusions 
Even under stationary conditions, normal variations in 

engine combustion cause instantaneous changes in engine 

parameters and outputs, such as power and fuel consump-

tion. Such instantaneous variations contribute to experi-

mental errors and may contain some relevant information 

that is lost when only the average values are considered. 

The use of instantaneous readings, either by dynamometer 

measurement equipment or by OBD readings, can help  

a more resolute analysis. 

The use of machine learning models using instantaneous 

readings from the engine OBD showed promising results. 

The models are able not only to reproduce the test replica-

tion used for training but also other replications. The use of 

the OBD reading, digital twin and SHAP values also al-

lowed a better assessment of the parameters impacting the 

engine efficiency that would be difficult to assess using 

conventional test methods. After the SHAP analysis men-

tioned before, a dataset combining three replications of 

each variant, Baseline, 0.1 and 0.2% GNP, was created by 

merging the individual tests. The created dataset had 

208181 instantaneous OBD readings. The digital twin used 

as input only the Pedal%, rpm and the GNP concentration. 

The digital twin accuracy was excellent, R
2
 = 1.00, Mean 

Squared Error, MSE, 1.6E–3 and the accumulated fuel 

consumption error was lower than 0.01% (Fig. 23 and  

Fig. 24). 

The impact of the GNP additive was very low in the 

carried, stationary tests. Indeed, it is known that the impact 

of lubricant formulation is low on diesel engines operating 

at higher loads. The same GNP additive, L66_2, was tested 

with success on SI vehicles under the FTP75 cycle [20]. 

Improved additives and truck transient tests are ongoing 

and will be covered in future publications. 

 

Fig. 21. Digital twin of three replications of each lubricant variant, trained  

 only with Pedal%, rpm and GNP concentration as input 

 

Fig. 22. SHAP summary for the digital twin with three replications of each  

 lubricant variant 

 

The main conclusions from the research conducted are 

as follows: 

– the use of Random Forest, machine learning digital 

twins, allowed for the reproduction of the actual values 

of fuel consumption with very good accuracy 

– use of Pearson and Spearman correlations to select the 

model input parameters can lead to the inclusion of un-

necessary parameters, which not only increases comput-

er resources but can also lead to erroneous analysis 
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– use of SHAP values can better indicate the parameters 

influencing the output and a better understanding of the 

physical system and the digital twin model, somehow 

“opening” the AI black box, which will be explored in 

more complex and transient tests. 
 

 
 
 
 
 

 

Nomenclature 

AI artificial intelligence 

BL baseline 

DPF diesel particulate filter 

ESC european stationary cycle 

GNP graphene nanoplatelets 

GO graphene oxide 

MDD medium-duty diesel 

MoDTC  molybdenum dithiocarbamate 

OBD on-board diagnostics 

RDE real driving emissions 

SAPS sulphated ash, phosphorous, and sulphur 

SHAP Shapley additive explanations 

TCDI turbo common rail direct injection 

TGA thermogravimetric analysis 
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