Article citation info:

Tomanik E, Koszatka G, Marinho Maria T, Christinelli W, Hunicz J, Rodrigues dos Santos Crepaldi E. Use of digital twin to analyze
the effect of graphene as a lubricant additive for diesel engines. Combustion Engines. 0000; XXX (X):XX-XX.
https://doi.org/10.19206/CE-211733

Eduardo TOMANIK

Grzegorz KOSZALKA

Thiago Marinho MARIA

Wania CHRISTINELLI

Jacek HUNICZ

Ellen RODRIGUES DOS SANTOS CREPALDI

Gombustion Engines

Polish Scientific Society of Combustion Engines

Use of a digital twin to analyze the effect of graphene as a lubricant additive
for diesel engines

ARTICLE INFO The effect of two graphene additives to engine oil on diesel engine efficiency was studied. The first additive was
a commercially available additive based on graphene oxide (GO). The additive was tested on a small automotive
diesel engine. The use of the additive concentration recommended by the manufacturer at 3% in the engine oil
resulted in a reduction of the specific fuel consumption from 0.2% to 0.7%, depending on the engine operating
conditions. The second additive, currently under development, was based on graphene nanoplatelets (GNP). The
additive was tested on a medium-sized diesel engine in a truck. The use of the equivalent GNP concentration of
0.1% resulted in a reduction of fuel consumption in the ESC test by 0.4%. Increasing the concentration of this
additive to 0.2% GNP did not result in a further reduction in fuel consumption. Because the engine efficiency
benefits resulting from the use of improved oils were close to the measurement uncertainties, the applicability of
machine learning using engine on-board diagnostics (OBD) readings to analyze the impact of lubricant addi-
tives was investigated. The use of Random Forest, machine learning digital twins, was able to reproduce the
OBD instantaneous fuel consumption with excellent accuracy. Further analysis with SHAPLEY values helped to
identify the more important engine parameters that affected instantaneous fuel consumption.
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1. Introduction

Reducing mechanical losses in internal combustion en-
gines is crucial for enhancing efficiency and lowering emis-
sions. Engine oil properties significantly influence these
losses [7, 9, 21]. Lower-viscosity oils can decrease hydro-
dynamic friction, improving fuel economy. However, they
may also reduce oil film thickness, potentially increasing
wear under certain conditions. To mitigate this, different
additives to oil are employed to form protective tribofilms,
reducing boundary friction and wear. Studies have shown
that combining low-viscosity base oils with effective addi-
tives like molybdenum dithiocarbamate (MoDTC) can
optimize the balance between friction reduction and com-
ponent protection, leading to improved engine performance
and longevity. Unfortunately, MoDTC, which is a very
effective friction modifier, is not used in diesel engines
with the Diesel Particulate Filter (DPF) due to its harmful
effect on the DPF [8, 22, 23].

Recent advances in nanotechnology have introduced
novel lubricant additives, among which graphene-based
materials have gained considerable attention due to their
outstanding tribological and thermal properties. Graphene
oxide (GO) and graphene nanoplatelets (GNP) are among
the most commonly investigated forms of graphene for
lubricant applications. GO, with its oxygen-containing
functional groups, offers good dispersibility in polar and
non-polar base oils, enabling the formation of a stable sus-
pension and tribological film. On the other hand, GNPs —
few-layer graphene structures with high surface area —
demonstrate excellent mechanical strength, load-bearing
capacity, and low shear characteristics, making them effec-

tive in reducing boundary friction and wear under high-load
conditions [1, 3, 12, 15, 17, 18].

Machine learning techniques have shown increased use
in helping engine tests. They are able to find complex,
nonlinear relationships in data that may be difficult to catch
with traditional statistical methods. Machine learning can
identify the importance of even those features that have
a smaller impact on the output and take them into account
in creating predictions [4-6, 10, 16, 19, 24]. The use of
digital twins can reduce the number of costly experimental
tests and help with the analysis of instantaneous variations.
Engine transients, e.g. transients when the engine goes from
one operation regime to another, are neglected in stationary
tests but may contain relevant information on real driving
conditions.

In the current work, two graphene-based lubricant addi-
tives were investigated using diesel engine dynamometer
tests. Since the expected fuel savings by using improved
oils are almost the same as experimental test variability,
instantaneous reading of the engine On-Board Diagnostics
(OBD) and random Forest machine learning digital twins
were used for a more detailed analysis of the effect of the
lubricant additives.

2. Tests of a commercially available graphene
additive
A commercially available additive with claims of gra-
phene was added to a SAE 5W-30 oil, fully synthetic, Low
SAPS. TGA analysis suggests that the additive contains
Oxide of Graphene (GO). It was not possible to determine
the Graphene concentration in the additive. 3% in volume
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Use of a digital twin to analyze the effect of graphene as a lubricant additive for diesel engines

of additive was added to the engine oil, as recommended by
the supplier, for the engine tests. Due to the additive's rela-
tively lower viscosity, oil kinetic viscosities kV40 and
kV100 were reduced by about 4%. See details in [11].

An automotive 4-cylinder Diesel engine, 1.25 L, 66 kW,
TCDI, Common Rail injection system, air cooling and EGR
was tested on a dynamometer with controlled coolant and
oil temperatures. The following OBD parameters were
recorded at 5 Hz frequency: time, acceleration pedal posi-
tion, engine rotational speed, total fuel injection, coolant
temperature, boost pressure, fuel pressure in the rail, ex-
haust temperature after DPF, and DPF filling. Potentially
interesting parameters, such as injection timing, were not
available via OBD on this engine. The dynamometer tests
were done at two accelerator pedal positions: 100% and
30%, and engine speeds: 2000 to 4000 rpm. The test se-
quence was: a) baseline oil, b) addition of 3% VV of the
graphene-based additive, as recommended by the additive
supplier. Before pouring the additive, the same oil volume
was removed from the crankcase to maintain the engine oil
volume constant. Maximum engine torque and power in-
creased 0.8% and 0.4% with the oil additive, but as fuel
consumption also showed a small increase with the addi-
tive, BSFC decreased on average by only 0.2% [11].

Tests for oil without an additive and with the additive
were repeated at least 3 times. The repetitions were always
done on different days. For simplicity, the dataset was de-
fined as sequential time, including only the OBD acquisi-
tions. Figure 1 shows the test sequence with the reference
oil (without an additive). Figure 2 shows the map of engine
rotational speed and pedal position covered during the tests.
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Fig. 1. Test sequence with the reference oil: (a) complete sequence,
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Fig. 2. Map of engine rotational speed and pedal position along the tests

with the reference oil

Pearson and Spearman correlations were calculated to
select the variables used as input to train the digital twin.
Pearson assumes a linear numerical regression, while
Spearman is more flexible and calculates the correlation
based on the variable ranking. Table 1 shows the Pearson
correlation between variables, and Table 2 shows the Pear-
son and Spearman correlation factors for the instantaneous
fuel consumption. Pearson and Spearman's rankings are
similar, but notice that some differences exist. See discus-
sion of Shapley values in the MDD case ahead.

Table 1. Pearson correlation coefficients between the variables

rpm .00 RS 013 | 041 |o064 0.11 0.25 0.52

Pedal Pos |0.25 0.08 0.43 0.26 :

T_cool 0.13 i 0.15 0.75 0.09

P_boost |0.41 0.11 0.26 0.34

P rail 0.64 0.06 0.35 032 |

Fuellnj |o.9] 0.07 KL 0 0.44 0.26 !

T afterDPF[0.11| 043 015 | 026 |035| 044 | L0 | 035 0.44

DPF_fill  |0.25| 0.26 075 | 034 0.26 0.35 0.27

Fuel Cons. |0.52 0.09 { 6 0.44 0. 100
rpm|Pedal Pos |T_cool [P_boost |P rail [Fuel Inj|T_afterDPF |DPF_fill |Fuel Cons.

Table 2. Pearson and Spearman correlations to the instantaneous fuel
consumption

Pearson |Spearman -

rpm 0.52 0.69 —

Pedal Pos 0.92 0.89 L
T cool 0.09 0.19 0.6
P_boost 091 | 092 0.5
P rail 096 | 098 0.4
Fuel Injection 0.90 0.2
T_afterDPF 0.44 0.19 0.1
DPF_filling 0.27 0.37 0.0

The correlation coefficients show some obvious rela-
tions, fuel consumption is directly dependent on fuel injec-
tion, boost pressure, etc. To verify the digital twin's capaci-
ty to make predictions with as few parameters as possible,
the following parameters were selected to predict the in-
stantaneous fuel injection:

— inputs: engine rotational speed, pedal position, cooling
temperature

— output, “target” in the machine learning jargon: fuel
injection or fuel consumption, the latter calculated from
the OBD fuel injection and engine rotational speed.
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The machine learning digital twin is created (“trained”
in the Al jargon), having variables for input and, in our
case, one for output to be predicted (Fig. 3-5).

Model Predictive
training model
calibration changes
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analysis)

Fig. 3. Scheme of the machine learning approach used in this work (repro-
duced from [19])
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Fig. 4. Scheme of the machine learning Random Forest model (reproduced
from [19])
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Fig. 5. Scheme of the Random Forest model (reproduced from [19])

In all replications, the model correlation between the re-
al ECU instantaneous fuel injection and the model was very
good, with a coefficient of correlation R? of almost 1.0 and
an accumulated error smaller than 0.1%. See two examples
in Fig. 6 and Fig. 7. Such good correlation was already
verified in the author's previous publications, even for tran-
sient emission and RDE cycles [14]. More robust validation
is whether the model trained on a given day can predict the
test on another day, which was also obtained with the de-
veloped digital twin. Figure 7 shows that the model predic-
tion for the 2024Feb06 test using the model trained with the

baseline 2023 dataset showed an almost perfect correlation,
R% 0.9994, and the accumulated error on accumulated fuel
injected along the replication was lower than 0.1%. The
time frames in Fig. 6-9 refer to the respective test replica-
tion (06_02 and 07_02). They are part of the complete test
sequence shown in Fig. 1, but with time starting at the start
of the respective replication.

06 02 test (baseline oil)

nstantaneous Fuel Injection [mm?3/s]

(a)

Replication test time [s]

A% model vs. OBD reading

Replication test time [s]
(c)

nstantaneous Fuel Injectic

_H |_.'.~] o

Model prediction

OBD value

Fig. 6. Digital twin predictions for the reference test

As already mentioned, using the dynamometer stand
measurements, BSFC reduction was almost within the ex-
perimental uncertainties [11]. To investigate if the use of
digital twins could provide a more resolute comparison, the
following method was carried out:

— instantaneous fuel consumption was calculated using the
fuel injection and engine rotational speed
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& — 2 digital twins were trained for tests done on consecu-

tive days, one with the baseline oil, and the other with
' the addition of the 3% V/V graphene additive. Both
models were able to fully reproduce the respective da-

"o w0 % am 50 w0 tasets, as discussed before

OBD valua — then, the model trained with the baseline oil was used to

) . ) - ) " predict the test with the graphene additive and vice versa.
Fig. 7. Digital twin predictions for test with 3% additive

18 18 4500
(a)It (b)lﬁ A000
Tf._ ! % 1 3500
21 2

= 3000
54 c
o1 o 10 L o
2 g, 2500 ¢
£ £ E a
2 3 2000 =
c I
8 S 1500
3 3 °
c 2 1000
0 k—h«ﬁw-n—hﬂ—rﬁ.'—daﬂ—-y—-—-l 500
2 0
0 2000 4000 6000 8000
replication test time [s]
=—0Gr (OBD) =——delta =———rpm
(c) Bl oil test, model trained with Graphene (d)  Graphene test, model trained with BL oil
10 ® 10
08 &0 — 08
06 g 06
—_— _ 04
=

$ 02 § 02

a8 2

£ 00 = 00

8 S

g 02 3 02

a [

0.4 -0.4
0.6 -06
08 08
-1.0 H -1.0
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Fuel Consumption [kg/h] Fuel Consumption [kg/h]

Fig. 9. Tentative to use the digital twins to predict the influence of graphene on instantaneous fuel consumption: (a) and (c) reference oil test, model
trained with graphene; (b) and (d) test with graphene, model trained with the baseline oil
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The expectation was that the model trained with gra-
phene would reduce the fuel consumption when applied to
the baseline oil, and the opposite when the baseline oil
model was applied to the test with graphene. However, the
results were inconclusive. While the model trained with
graphene reduced 1.24% the fuel consumption of the base-
line test, the use of the baseline oil model showed almost no
change when applied to the test with graphene. See Fig. 9.

3. Tests of a GPN-based additive

After testing the GO additive on the small diesel engine,
the project moved to the use of an in-house graphene-
developed additive based on graphene nanoplatelets (GNP)
with a higher graphene concentration. Table 3 and Fig. 10
show the GNP main characteristics. See details in [20]. The
higher graphene concentration allowed a reduction in the
additive volume, leading to a lower impact on the kinematic
viscosity of less than 1%.

Table 3. GNP characterisation

Characteristic Unit Mean Q90
Number of layers — <N>2D (nm) — 9 11
Surface density of point defects — | 10% cm™ 28 43
nD
Lateral size — L, nm 71.1 99.4
D to G peak intensity ratio (Ip/lg) - 0.28 0.44

30 29.24

23.45

18.59

15.07

Percentage [%]
N
o

6.54

4.66

1 2 3 4 5 6 7 8 9 10 >0
Number of Layers

Fig. 10. GNP number of layers, adapted from [20]

A Medium-Duty Diesel (MDD) engine of 4.8 L, 4-cyl,,
136 kW and 700 Nm was used in the tests. Both the DPF
sensor and the coasting strategies were turned off during the
tests. The dynamometer tests were carried out in the follow-
ing sequence: a) baseline oil, b) addition of the equivalent
of 0.1% graphene, c) another 0.1%, reaching a total of 0.2%
of graphene. The test cycle followed the European Station-
ary Cycle (ESC) — see Fig. 11. Four other operation re-
gimes, at engine rotational speed of maximum power and
25, 50, 75 and 100% of load were added to the test program
for completeness.

On the combined ESC values, 0.4% and 0.3% fuel sav-
ing were observed with 0.1% and 0.2% graphene additives,
respectively — see [11]. The possibilities of using Al in the
results obtained in MDD tests were initially investigated in
[14]. Digital twins were able to reproduce the OBD values
accurately. In the current work, an improved digital twin
and the calculation of SHAP values were used to under-

stand better the potential and limitations of using Al on fuel
consumption tests.

Emission Test Cycles: ESC

8% 9% 8%

s - °
5% 2o 5%

. OROXO,

‘Additional modes
determined by

certification personnel 5% 10% 5%
T OROR0;
]
10%
5% 5%
. 0-0©®
15% A B c
0 1 T T
50 I£) 100

idle Engine Speed, %

Fig. 11. ESC cycle

On the ESC cycle, the engine must be operated for 2
minutes at each regime point. At each point, the first 20
seconds are neglected to allow engine stabilization. But
even after stabilization, it is not uncommon that some en-
gine parameters present instantaneous variations. For ex-
ample, Fig. 12 shows turbo pressure variations, which may
affect instantaneous power, fuel consumption etc. Figure 13
shows in more detail step 11, neglecting the first 20 seconds
as defined in the ESC procedure. The step average is 1791
hPa and 7.0 kg/h, respectively, for turbo pressure and fuel
consumption. However, it can be noted that there is lower
fuel consumption when the P_turbo is higher than the aver-
age and higher fuel consumption when the P_turbo is lower
than the average. Such a correlation, although small, is not
considered if only the average values are considered.

2500 120.0
2250
2000 100.0
1750 80.0
1500

1250 60.0

1000

re 40.0
750

500

20.0
250

0.0

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

e P_turbo hPa == Pedal% 9 Time [s]

Fig. 12. OBD turbo pressure and pedal position along a tests sequence;
notice some instantaneous variations even on stationary conditions

Table 4 shows the four higher Pearson correlation coef-
ficients used as input to train the digital twin. These chosen
parameters are engine speed, coolant temperature, turbo-
charger pressure and calculated torque, so-called rpm,
Tcool, P_turbo and CalcTorque, respectively. No signifi-
cant difference was found in the correlation coefficients
between the baseline oil and the ones with graphene addi-
tives.
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Fig. 13. Turbo pressure and fuel consumption for step 11 — see Fig. 12

Some of the parameters may indeed be an indirect con-
sequence of fuel consumption. For the carried-out tests,
with the engine already hot, the engine cooling temperature
was probably affected by the torque (and not vice versa).
The higher torques caused, of course, higher fuel consump-
tion. See discussion ahead.

The developed digital twins were able not only to re-
produce the test used for training accurately but also to
predict the instantaneous fuel consumption of a different
replication — see Fig. 14-18.

Table 4. Pearson correlation coefficients for the four parameters used to train the digital twin

baseline oil +0.1% graphene +0.2% graphene
BL_18|BL_19|BL_20/BL_22|/BL_25/BL_26| |0.129|0.1.30{0.1_32{0.1_33/0.1_35/0.1 36/0.1 38/0.1 39| |0.2 41|0.2_42{0.2_44/0.2.45/0.2 47/0.2 48
rpm 0.58 | 0.56 | 0.54 | 0.56 | 0.53 | 0.51 057 | 052 | 051 | 051 | 0.53 | 0.54 | 0.54 | 0.48 0.53 | 054 | 055 | 0.53 | 0.56 | 0.53
0.63 | 0.61 | 0.60 | 0.59 062 | 059 | 0.58 | 0.58 | 0.57 | 0.58 | 0.61 | 0.59 0.57 | 059 | 0.60 | 0.60 | 0.61
AT 093 093 093 093 092 0. 093 09 093 0.93 . 093 093 093
elpTey 092 [0.92 1092 (092 092 092 . 093 092 093 092 092 0.92 . 092 092 092
BL18 (RF mode\] 30 Fuel consumption [kg/h]
30 ——Redl —=Model -redl 5 BL 18 (RF model)
=15 4 ® =100
E; ;
g 20 w
2 ) &
£15 3
13
g k |- '| — L pmpen 10 z
TTOuE '
0 e— -2
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time [s] B o
Fig. 14. RF digital twin for the baseline oil replication #18
BL 18 using model trained with BL19 (RF model) Fuel consumption [kg/h]
BL 18 (RF model)
30 ——2nd_Target_Real 5
4 25
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} 3 20
Ezo 5 E
E'lh 1 15
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Fig. 15. RF digital twin, trained with replication BL #19, for the BL #18
01% 38 (RF model) )
30 ——Target_Real ——Diff 5 0 Fuel consumption [kg/h]

Fuel Consumption [kg/h]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time [s]

01% 38 (RF model)

R*=1.00

Model - Real

Fig. 16. RF digital twin trained with replication #38 with 0.1% GNP

COMBUSTION ENGINES, 0000; XXX(X)



Use of a digital twin to analyze the effect of graphene as a lubricant additive for diesel engines
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Fig. 17. RF digital twin, trained with replication 01% #36, for the 0.1% #38
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Fig. 18. RF digital twin, trained with replication 0.2% #44

4. Use of SHAP values to analyze the digital twin
model

The correlation factor calculations were carried out in
the datasets and do not necessarily reflect the impact on the
model output. SHAP (SHapley Additive exPlanations) is
a method used to explain how machine learning models
make predictions. It is based on ideas from cooperative
game theory, especially Shapley values, which fairly meas-
ure each player’s contribution in a group. In machine learn-
ing, SHAP looks at how important each feature (or input) is
to a specific prediction. It shows how much each feature
pushes the prediction higher or lower by comparing the
result with and without that feature [2, 13].

SHAP helps explain both individual predictions (local
explanations) and overall model behavior (global explana-
tions). This is especially useful for complex models like
neural networks or ensemble methods, where understanding
how they work is often difficult. Because SHAP adds up all
feature contributions to match the model’s output, it makes
model decisions easier to trust and understand [2, 13].

Figure 19 presents a SHAP summary plot, which illus-
trates the impact of each feature on the model output across
the entire dataset. Each point in the plot represents a SHAP
value for an individual prediction, showing how much that
feature contributed to increasing or decreasing the predic-
tion.

The features are ranked vertically by their overall im-
portance (mean absolute SHAP value), with the most influ-
ential features at the top. In this case, Pedal%, P_turbo, and
rpm are the most impactful features in predicting the model
output. The color of each point represents the original value
of the feature for that observation, ranging from low (blue)
to high (red). For example, for Pedal%, high feature values
(in red) are generally associated with a strong positive im-
pact on the model output, whereas lower values (in blue)
tend to have a negative contribution.

High
R VY DU TAY P PR Y
P turbo O
InjCtl -'- %
CalcTorque "' E
wir +
P_ail |
el 4
Patm I

T T T T T Low
-10 -5 0 5 10
SHAP value (impact on model output)

Fig. 19. SHAP Summary Plot for Feature Impact and Direction
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The horizontal dispersion of points for each feature re-
flects the range of SHAP values and thus the variability in
that feature’s influence. Features like Pedal% and P_turbo
show wide distributions, indicating that their impact on
predictions varies significantly across the dataset. This
visualization helps to understand not only which features
are most important but also how their values influence the
model's behavior, enabling better transparency and inter-
pretability of the predictions.

Figure 20 shows the SHAP bar plot for the baseline test.
The plot summarises the average impact of each feature on
the model’s predictions, measured by the mean absolute
SHAP value. Pearson and Spearman correlations are also
shown for comparison. The Pedal% is the most influential
feature, followed by P_turbo and rpm, indicating their
strong contribution to model output. Other features like
InjCtl, CalcTorque, and tAir have a moderate influence,
while P_Qil, Tcool, and Patm contribute minimally. This
plot provides a clear overview of the importance of global
features, supporting model interpretation and validation.

Notice that several parameters with high Pearson and
Spearman correlation have little or no impact on the digital
twin. A remarkable example is the CalcTorque with corre-
lation factors close to 0.9, but very little effect on the model
output.

real |

P_turbo - Pearson | Spearman
pedal% 0.97 0.98
mm
- Pturbo 0.93 0.94
mjct 1 injctl 0.94 0.90
ICalcTorque 0.92 0.89
CalcTorque | Teool 0.69 0.67
tair || rpm | 0.60 0.53
) tAir | 026 033
p_oil | P_oil 0.54 0.21
Teool Patm . 012 0.12
Patm
0 1 2 3 4 5 6

mean(|SHAP value|) (average impact on model output magnitude)
Fig. 20. Global Feature Importance Based on SHAP Values

5. Discussion and conclusions

Even under stationary conditions, normal variations in
engine combustion cause instantaneous changes in engine
parameters and outputs, such as power and fuel consump-
tion. Such instantaneous variations contribute to experi-
mental errors and may contain some relevant information
that is lost when only the average values are considered.
The use of instantaneous readings, either by dynamometer
measurement equipment or by OBD readings, can help
a more resolute analysis.

The use of machine learning models using instantaneous
readings from the engine OBD showed promising results.
The models are able not only to reproduce the test replica-
tion used for training but also other replications. The use of
the OBD reading, digital twin and SHAP values also al-
lowed a better assessment of the parameters impacting the
engine efficiency that would be difficult to assess using
conventional test methods. After the SHAP analysis men-

tioned before, a dataset combining three replications of
each variant, Baseline, 0.1 and 0.2% GNP, was created by
merging the individual tests. The created dataset had
208181 instantaneous OBD readings. The digital twin used
as input only the Pedal%, rpm and the GNP concentration.
The digital twin accuracy was excellent, R?> = 1.00, Mean
Squared Error, MSE, 1.6E-3 and the accumulated fuel
consumption error was lower than 0.01% (Fig. 23 and
Fig. 24).

The impact of the GNP additive was very low in the
carried, stationary tests. Indeed, it is known that the impact
of lubricant formulation is low on diesel engines operating
at higher loads. The same GNP additive, L66_2, was tested
with success on Sl vehicles under the FTP75 cycle [20].
Improved additives and truck transient tests are ongoing
and will be covered in future publications.

Instantaneous Fuel Consumption [kg/h]
3 replications of each variant (BL, 0.1 and 0.2% GNP)

30

R*=1.00

25

Digital Twin
T [
w o

[y
o

0 5 10 15 20 25 30
OBD reading

Fig. 21. Digital twin of three replications of each lubricant variant, trained
only with Pedal%, rpm and GNP concentration as input

High

bt e et
rom - ._4.*...
GNP *

-10 -5 0 5 10
SHAP value (impact on model output)

Feature value

Low

Fig. 22. SHAP summary for the digital twin with three replications of each
lubricant variant

The main conclusions from the research conducted are
as follows:

— the use of Random Forest, machine learning digital
twins, allowed for the reproduction of the actual values
of fuel consumption with very good accuracy

— use of Pearson and Spearman correlations to select the
model input parameters can lead to the inclusion of un-
necessary parameters, which not only increases comput-
er resources but can also lead to erroneous analysis
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— use of SHAP values can better indicate the parameters
influencing the output and a better understanding of the
physical system and the digital twin model, somehow

“opening” the Al black box, which will be explored in

more complex and transient tests.

Nomenclature

Al
BL
DPF
ESC
GNP
GO

artificial intelligence
baseline

diesel particulate filter
european stationary cycle
graphene nanoplatelets
graphene oxide

MDD medium-duty diesel

MoDTC molybdenum dithiocarbamate

OBD on-board diagnostics

RDE real driving emissions

SAPS sulphated ash, phosphorous, and sulphur
SHAP Shapley additive explanations

TCDI turbo common rail direct injection

TGA thermogravimetric analysis
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