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ARTICLE INFO  This paper presents a study on the application of ChatGPT 4.0 in developing a numerical model for the perfor-

mance analysis of a turbofan engine. The modeling process began with general queries regarding numerical 

approaches to engine simulation. The initial model proposed by ChatGPT appeared plausible but contained 
significant conceptual errors. Through iterative dialogue and refinement, these errors were gradually identified 

and corrected, ultimately resulting in a valid engine model. This intermediate model included two rotating 

components (fan and core spool) and assumed an ideal gas with distinct thermodynamic properties in the cold 
and hot sections of the engine. Based on this model, ChatGPT successfully generated numerical code for 

implementation in the MATLAB environment, handling this task with high accuracy and flexibility. Further 

efforts focused on extending the model to include air extraction for turbine cooling, internal engine bleeds, and 
the application of a semi-perfect gas model to describe the working fluid more realistically. In these more 

advanced areas, ChatGPT’s performance declined significantly. Despite prompting and corrective guidance, it 

was unable to produce a fully functional and physically accurate implementation of the enhanced model. The 
study concludes that while ChatGPT demonstrates strong capabilities in translating well-defined physical 

models into numerical code, especially within MATLAB, it remains unreliable in constructing or modifying 

complex thermodynamic models without significant user oversight. Nonetheless, its use can significantly 
accelerate the implementation phase of numerical engine modeling when guided by an experienced user. 
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1. Introduction 
The generation of accurate, reliable, and above all prob-

lem-adequate models constitutes a critical issue in both 

engineering practice and scientific research. A substantial 

body of literature is dedicated to the challenges of modeling 

technical systems as well as to the tools and methodologies 

employed in this context. This aspect is particularly promi-

nent in aerospace engineering, where model-based investi-

gations play a vital role not only in testing and optimizing 

existing designs but also in supporting the development of 

new concepts and their optimisation [35]. 

The full spectrum of modeling challenges in the field of 

aeronautics is highly complex due to the vast scope of the 

subject. The present study focuses on modeling the propul-

sion system, which is itself a highly complex technical 

system that requires a multidimensional analytical ap-

proach. Consequently, depending on the specific research 

objectives, engine modeling can be addressed from various 

perspectives, taking into account both the intended purpose 

of the study and the required level of model fidelity [23]. 

Research involving numerical modeling addresses a range 

of issues, including engine performance, as demonstrated in 

studies [2, 5, 11, 20, 35]; environmental impact, such as 

pollutant and greenhouse gas emissions [14, 16–18, 27]; 

structural integrity assessments [12]; and flow analysis 

within the engine or its selected components [1, 25, 31, 33]. 

In many cases, these issues are interrelated, with the results 

of one type of analysis serving as input data for subsequent 

analyses. For instance, in [1], the results of gas-dynamic 

parameter calculations in the engine control stations are 

used as boundary conditions for flow analysis in the com-

pressor rotor, and the outcomes of this analysis are subse-

quently applied in evaluating engine performance. Similar-

ly, in [16], engine operating parameters obtained from per-

formance calculations are used as input for emissions mod-

eling, while in [12], flow simulations form the basis for the 

structural analysis of the compressor. Consequently, there is 

a growing trend toward integrating models operating in 

different computational domains to improve the efficiency 

of data exchange between them. This facilitates the devel-

opment of computational systems that are increasingly 

becoming complex, multidisciplinary tools.  

Steady-state analyses are not always sufficient; in many 

cases, it is necessary to investigate unsteady phenomena – 

not only in scenarios involving changes in engine operating 

conditions, such as acceleration or deceleration, but also 

under steady-state operation to assess interactions between 

rotating and stationary components of the engine [31, 33], 

where unsteady effects are also analyzed. However, such 

detailed modeling requires significant computational re-

sources and time for model setup and execution, resulting 

in high research costs. In many cases, a significantly more 

cost-effective approach is used, involving a variation in the 

level of model fidelity across engine components – known 

as the multifidelity approach – as demonstrated in studies 

[1, 5, 25]. In this method, a selected engine module, such as 

the compressor flow path [5, 25], is modeled in detail using 

a more complex model, while other components are repre-

sented using simplified methods. This approach enables  

a substantial reduction in computational time and cost while 

maintaining high accuracy within the targeted area of inves-

tigation. 

Engine performance calculations are still predominantly 

based on quasi-one-dimensional (pseudo-1D) analysis, 
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which relies on averaged thermodynamic parameters of the 

flow in the engine’s control stations. This approach is rep-

resented in studies such as [2, 4, 9–11, 21–23], where flow 

parameters are determined in selected control sections to 

evaluate engine performance. The modeling is grounded in 

the conservation equations of mass, momentum, and ener-

gy. At the same time, the processes occurring in individual 

engine components are characterized using efficiency pa-

rameters that account for deviations from idealized, re-

versible transformations. 

A similar approach is employed by dedicated computa-

tional tools, such as the GasTurb Program, Gas Turbine 

Simulation Program (GSP), and the Propulsion Object-

Oriented Simulation Software (PROOSIS) [2], which are 

advanced tools for analyzing the performance of gas turbine 

engines. Their additional computational modules also ena-

ble the determination of other operating parameters of a jet 

engine, as demonstrated in [14], where the GasTurb soft-

ware was used to calculate NOx emissions for the F100-

PW-229 engine. 

In [2], it was noted that the use of commercial tools re-

quires access to the licenses, which could be expensive. 

Moreover, users frequently lack access to the program's 

source code, which prevents them from adapting it to meet 

the needs of their research, thereby reducing the research-

er’s role to that of an operator rather than a developer. For 

this reason, proprietary in-house programs for aero engine 

performance calculations continue to be developed, based 

on the laws of physics and chemistry and tailored to specif-

ic computational requirements, as demonstrated in studies 

such as [2, 9–12, 21]. Additionally, the development of 

numerical methods enables their adaptation for creating 

new tools in the field of aircraft engine model preparation. 

For example, in [29], fuzzy logic was employed to develop 

an engine model, whereas in [19], neural networks were 

used to construct a compressor map model for engine per-

formance analysis. 

In recent years, emerging and rapidly advancing artifi-

cial intelligence (AI) technologies have opened up new 

possibilities for model development and analytical research. 

Recent advancements in AI, particularly the emergence of 

Large Language Models (LLMs), have opened new ave-

nues for supporting engineering design and computational 

tasks [29, 30]. Various tools based on LLMs are currently 

being developed by companies such as Google, Microsoft, 

and others. One of the most widely recognized examples is 

ChatGPT. ChatGPT, in particular, has been explored as  

a tool for assisting in code development, algorithm genera-

tion, and even conceptual design ideation, with early results 

indicating both its versatility and limitations [6, 28]. 

Recent studies have shown that LLMs can assist in con-

ceptual design, requirement generation, and early-phase 

engineering workflows [15]. They facilitate the automation 

of repetitive tasks, offer support in code generation and 

debugging, and contribute to technical documentation with 

high efficiency [28]. Domain-specific tuning, as seen in 

AviationGPT, further enhances its applicability to special-

ized tasks, including aviation safety reports and aircraft 

systems analysis [34]. 

LLMs are also being considered as collaborative agents 

in engineering design processes. When used within struc-

tured frameworks, they support ideation, generate architec-

tural proposals, and facilitate cross-domain communication 

[29, 30, 32]. Their ability to process large volumes of data 

and produce meaningful summaries or insights makes them 

particularly useful in system-level engineering tasks. 

In the context of aviation, artificial intelligence tools, 

including LLMs, are viewed as key enablers of next-

generation operations and training. Their integration is 

linked to changes in the required skillsets for aviation pro-

fessionals, with an increasing emphasis on AI literacy and 

human-machine collaboration [13]. 

Despite their strengths, the studies also highlight signif-

icant limitations. LLMs often produce outputs that are syn-

tactically correct but semantically flawed or factually inac-

curate [28, 32]. They may hallucinate technical content, 

misinterpret standards, or apply inconsistent logic in com-

plex engineering tasks. These risks are particularly critical 

in safety-sensitive fields, such as aerospace. 

Furthermore, performance across different LLM frame-

works varies considerably. Their effectiveness in handling 

highly specific or quantitative engineering tasks remains 

limited unless paired with dedicated tools or domain-

specific training [30]. Human validation and oversight are 

still essential to ensure correctness and reliability. 

This paper examines the practical application of 

ChatGPT 4.0 in developing a numerical performance model 

for a turbofan engine. The study employed the free version 

of ChatGPT, a widely accessible tool used by a broad 

community of users. The primary objective was to utilize 

this tool to assist in developing a turbofan engine perfor-

mance model, which would then be translated into executa-

ble code within a selected computing environment – in this 

case, MATLAB. The aim was to assess the level of model 

complexity that could be achieved through such an ap-

proach, as well as to evaluate the correctness of the result-

ing model. In doing so, we sought to determine whether  

a user without prior expertise in this specific domain could 

generate a valid computational model, potentially applica-

ble to broader tasks such as aircraft performance analysis or 

numerical simulation-based testing. 

2. ChatGPT utilization for turbofan engine  

calculation 
This study investigates whether ChatGPT 4.0, available 

in its free version at the beginning of 2025, is capable of 

generating a turbofan engine performance model. The focus 

is on evaluating the model initially proposed by the tool and 

assessing how well it aligns with standard methods com-

monly used for such analyses. The generated results are 

systematically validated using established and verified 

computational tools previously developed for this purpose. 

In cases where inconsistencies or errors are identified, 

an iterative dialogue is conducted with the language model 

to address and correct the issues. All modifications are 

directly implemented into the computational code and con-

tinuously validated against the reference model. 

Once a correct elementary performance model is estab-

lished, further work will focus on its expansion to include 

elements of more advanced models–for example, incorpo-
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rating compressor bleed flows, turbine cooling flows, and 

working fluid properties modeled using semi-perfect gas 

formulations. The overall workflow is illustrated in the 

schematic diagram presented in Fig. 1. 

 

Fig. 1. Workflow for turbofan engine model development using ChatGPT 

2.1. Turbofan engine model  

In the first stage, ChatGPT was asked to develop a nu-

merical model for calculating the performance of a turbofan 

engine. The instruction was formulated as follows: 

“Could you provide the algorithm for turbofan engine 

thrust (F) and specific fuel consumption (SFC) calculation 

for defined bypass ratio (BPR) fan pressure ratio (FPR), 

compressor pressure ratio (CPR), turbine Inlet Tempera-

ture (TIT) mass flow rate. Engine model should include 

pressure losses and rotating part efficiencies”. 

The GPT response provided a computational algorithm 

that was structured with a clear specification of input data 

and a numerical model. Input data included fundamental 

engine parameters such as bypass ratio (BPR), fan pressure 

ratio (FPR), compressor pressure ratio CPR, turbine inlet 

temperature TIT, and engine mass flow rate mtotal. Next, 

parameters characterizing component efficiencies and flow 

pressure losses were specified. Finally, the input data in-

cluded ambient conditions, such as air temperature T0 and 

pressure P0, as well as gas properties, including specific 

heat capacity, isentropic exponent, and individual gas con-

stants. 

A complete computational model of the engine generat-

ed by ChatGPT is presented in Fig. 2. It is worth noting that 

the overall structure of the model was reasonably well-

prepared and logically organized, enabling the calculation 

of the specified parameters: engine thrust (F) and specific 

fuel consumption (SFC). However, several errors were 

present in the model, which could have affected the accura-

cy of the calculations. Incorrect or insufficiently precise 

formulas are summarized in Table 1. 

The formulas presented in Table 1 appear similar to the 

correct ones but contain errors that would lead to discrep-

ancies between the obtained results and the models found in 

the literature [4, 8, 23] cited by ChatGPT as the source for 

developing the algorithm. Additionally, the specific thrust 

was defined only in relation to the mass flow rate in the 

core flow ST = T mcore⁄ , and in the generated equation for 

specific fuel consumption, the fuel mass flow parameter 

was used, despite not being determined in the model. Fur-

thermore, the section following the fan, which is conven-

tionally referred to as station 13 in bypass flow and 23 in 

core flow, is labeled as station 2 in the algorithm prepared 

by ChatGPT. 
 

Step-by Step Calculations 

1. Fan and Bypass Steram: 

 Fan exit pressure and temperature: 

P2 = P0  FPR 

T2 = T0 (1 + 
ηf

ηc

(FPR(γ−1) γ⁄ − 1)) 

 Bypass flow exit conditions (assuming isentropic expansion in 

bypass nozzle): 

Pbypass exit = P2 πbypass 

Tbypass exit = Tbypass 

 Velocity of bypass stream 

Vbypass = √2 ηncp(Tbypass exit − T0) 

2. Core engine (Compressor Combustor and Turbine) 

 Compressor exit conditions: 

P3 = P2 CPR 

T3 = T2 (1 + 
ηc

ηf

(CPR(γ−1) γ⁄ − 1)) 

 Turbine exit conditions: 

 Available enthalpy drop across turbine: 

Δht = cp(T4 − T3) 

 Turbine exit temperature: 

T5 = T4 −
Δht

ηt

 

 Turbine exit pressure 

P5 = P3 πb (
T5

T4

)
γ (γ−1)⁄

 

 Velocity of core exhaust 

Vcore = √2 ηncp(T5 − T0) 

3. Thrust Calculation 

The total thrust is the sum of the momentum flux from the bypass and 

core stream 

F = ṁbypass Vbypass + ṁcore Vcore − ṁtotal V0  

where V0 is the freestream velocity  

4. Fuel Flow and Specific Thrust 

 Fuel-to-air ratio (FAR): 

FAR =
cp(T4 − T3)

ηb LHV
 

 Sopecific Thrust: 

ST =
F

ṁcore

 

 Specific Fuel Consumption (SFC): 

SFC =
ṁfuel

F
 

Fig. 2. Turbofan engine model generated by ChatGPT 
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Table 1. Incorrect or insufficiently precise formulas generated by Chat GPT 

Parameter Formula given by ChatGPT Correct formula [8] 

Fan exit temperature T2 = T0 (1 +
ηf

ηc

(FPR(γ−1) γ⁄ − 1)) T2 = T0 (1 +
1

ηf

(FPR(γ−1) γ⁄ − 1)) 

Compressor exit temperature T3 = T2 (1 +
ηc

ηf

(CPR(γ−1) γ⁄ − 1)) T2 = T0 (1 +
1

ηc

(CPR(γ−1) γ⁄ − 1)) 

Turbine enthalpy drop Δht = cp(T4 − T3) Δht = cp(T4 − T5) 

Turbine exit temperature T5 = T4 −
Δht

ηt

 T5 = T4 − Δht 

Turbine exit pressure P5 = P3πb (
T5

T4

)
γ (γ−1)⁄

 P5 = P3πb (1 −
1 − Tt5 Tt4⁄

ηT

)

γ
𝛾−1

 

Velocity of core exhaust Vcore =  √2ηncp(T5 − T0) Vcore =  √2ηn corecp(T5 − T5 st) 

Velocity of bypass stream Vbypass =  √2ηncp(Tbypass_ex − T0) Vbypass =  √2ηn bypasscp ∗ √Tbypass − Tbypas st 

 

2.2. Engine computational algorithm in Matlab  

ChatGPT was asked to generate an algorithm suitable 

for execution in the Matlab environment. The algorithm 

was prepared as a Matlab function, where the engine thrust 

and specific fuel consumption were generated as output 

data, while the input data included the fundamental parame-

ters of the turbofan engine and efficiencies of its compo-

nents. Additionally, ChatGPT suggested input data for the 

calculations, as presented below, and described the calcula-

tion initialization process as shown below: 

BPR = 6; % Bypass ratio [–] 

FPR = 1.6; % Fan pressure ratio [–] 

CPR = 30; % Compressor pressure ratio [–] 

TIT = 1400; % Turbine inlet temperature [K] 

m_core = 20; % Core mass flow rate [kg/s] 

eta_f = 0.9; % Fan efficiency [–] 

eta_c = 0.88; % Compressor efficiency [–] 

eta_t = 0.9; % Turbine efficiency [–] 

eta_n = 0.98; % Nozzle efficiency [–] 

pi_b = 0.95; % Burner pressure loss factor [–] 

pi_bp = 0.98; % Bypass pressure loss factor [–] 

T0 = 288; % Ambient temperature [K] 

P0 = 101325; % Ambient pressure [Pa] 

 

[F, SFC] = turbofan_calc(BPR, FPR, CPR, TIT, m_core, 

eta_f, eta_c, eta_t, eta_n, pi_b, pi_bp, T0, P0); 

 

The proposed data appear reasonable for calculations of 

an engine from the 1980s–1990s, as noted in [23]. They 

correspond to operating conditions at zero flight speed 

under ISA conditions. To adapt these data to the CFM-56-2 

present-day engine [3], some parameters proposed by 

ChatGPT were modified as follows: 

FPR = 1.45; % Fan pressure ratio [–] 

CPR = 20; % Compressor pressure ratio [–] 

m_core = 52; % Core mass flow rate [kg/s] 

TIT = 1600; % Turbine inlet temperature [K] 

The structure of the proposed computational algorithm 

was also thoroughly analyzed. In the algorithm, unlike the 

model presented in Fig. 2, the equations for the temperature 

behind the fan and compressor were correctly formulated. 

Additionally, the enthalpy drop across the turbine was 

properly defined as the temperature drop between sections 

4 and 5. This was determined based on the energy demand 

of the fan and compressor, which is a correct approach that 

was not included in the presented model. For the pressure 

calculations behind the turbine, the algorithm, like the 

model, used the isentropic expansion relationship (without 

losses).  

However, some errors were identified in the prepared 

algorithm. One issue was the fuel consumption calculation, 

which, although based on a fairly well-written equation, 

incorrectly used the turbine efficiency instead of the com-

bustion chamber thermal efficiency. Furthermore, incorrect 

equations for the exhaust gas velocity were repeated for 

both engine nozzles. The formula for calculating engine 

thrust was also incorrectly formulated as follows: 

 F = (mbypassVbypass + mcoreVcore) − mtotal√γRairT0   (1) 

The equation (1) includes an incorrect expression for the 

engine's velocity speed of sound formula √γRairT0 instead 

of flight speed. 

To summarize this section, it is worth noting that 

ChatGPT developed a plausible turbofan engine model. It 

includes almost all the required elements characterizing the 

performance of this type of engine. However, in many cas-

es, errors appear in the provided equations, which will 

undoubtedly affect the accuracy of the calculations. 

ChatGPT also developed a function for calculations in the 

Matlab program. In the developed code, some errors pre-

sent in the model were eliminated, even though the issue 

was never discussed. Nevertheless, the resulting computa-

tional algorithm still contains formulas that will lead to 

errors in the obtained calculation data. 

2.3. Comparison of engine calculation results 

Based on the works [2, 7, 9, 23] a turbofan engine mod-

el in Matlab was prepared, which was called “Correct mod-

el”. This model was used to validate the calculation results 

from the models prepared by ChatGPT. The data proposed 

by ChatGPT after mentioned modification was used, sup-

plemented with missing information, such as the combus-

tion chamber efficiency, which was assumed to be 98%, 

and calculations were performed. The results are summa-

rized in Table 2, along with a comparison to the available 

data for the CFM-56 engine. The first three parameters 
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(BPR, mtotal, OPR) were assumed parameters represent the 

input data assumed at the same level in the calculations 

using both models. They are from the range of data given 

for this engine in [3]. 

 
Table 2. Comparison of results from the ChatGPT-developed model, the 

correct model, and the data for the CFM-56 engine [3] 

Parameter ChatGPT Correct 

model 

CFM-56-2 

data 

BPR [–] 6 6 5.9–6 

mtotal  [kg/s] 364 364 356–31 

OPR [–] 31.9 31.9 30.5–31.8 

Takeoff thrust [kN] 13.4 100.6 96–106.7 

TSFC [g/(kNs)] 85.26 10.7 10.4–10.7 

 

The ChatGPT algorithm calculation results show signif-

icant discrepancies compared to the correct engine model. 

The calculation errors are at an unacceptable level. The 

computed takeoff thrust is approximately 8 times lower, 

and the TSFC is more than 8 times higher than what the 

correct model should produce. 

2.4. Improvement of the model through discussion  

with ChatGPT 

Based on the analysis of errors found in the model,  

a discussion with ChatGPT was initiated to eliminate them. 

The discussion started by pointing out that the exhaust gas 

velocities from both nozzles were being calculated incor-

rectly. ChatGPT was asked to correct the exhaust gas veloc-

ity equations, considering full expansion in the nozzle. The 

correction provided by ChatGPT was accurate. 

The next comment concerned the flight velocity equa-

tion used in the calculation of engine thrust. ChatGPT was 

asked to correct it by introducing the Mach number as an 

additional variable to determine the flight velocity. Addi-

tionally, it was asked to include the dynamic compression 

at the engine inlet (ram effect) in the calculations of tem-

perature and pressure before the fan. These suggestions 

were correctly implemented in the engine model. 

In the next steps, ChatGPT was asked to consider that 

the turbine is not ideal and undergoes a non-isentropic 

process by incorporating the isentropic efficiency in the 

formula for the pressure behind the turbine. Next was 

pointed out that for the combustion chamber, the thermal 

efficiency of the combustion chamber should be used in-

stead of the turbine efficiency. Additionally, it was speci-

fied that the flow losses in the bypass duct should be con-

sidered in the calculation of the pressure in the external 

nozzle. Finally, the value of specific heat for the flow in the 

hot section of the engine was modified to align with typical 

values used in literature [4, 23]. 

After implementing all these corrections into the model, 

ChatGPT was asked to regenerate the function in the 

Matlab environment. The modified function was used to 

perform calculations for the previously used CFM-56 en-

gine data set. The calculation results are presented in Table 

3. This time, the data shows a sufficient level of agreement 

with the engine's reference data (see Table 2). The thrust 

falls within the range of values reported for this engine, and 

the specific fuel consumption is only slightly below the 

minimum value. This would require only minor adjust-

ments to the model to achieve results within the expected 

range. 

 
Table 3. Results from the ChatGPT-corrected model 

Parameter ChatGPT corrected model 

Takeoff thrust [kN] 103.8 

TSFC [g/(kNs)] 10.1 

2.5. Expanding the engine model using ChatGPT 

The initially prepared and improved model from 

ChatGPT underwent further modifications better to align it 

with the design of the analyzed engine. The modifications 

were also aimed at using complex computational models of 

the gas flowing in the engine. The modifications were im-

plemented in stages by sending targeted queries to the sys-

tem. 

Two spool engine model 

The first step was to separate the engine calculations in-

to two rotors, as the previously obtained model treated the 

fan and compressor assembly as a single unit.  

To achieve this, the following command was executed: 

“Separate the computational model for the fan and com-

pressor assembly into two rotors, assuming that the low-

pressure rotor consists of a fan characterized by the Fan 

Pressure Ratio (FPR) and fan efficiency, as well as a low-

pressure compressor defined by the Low-Pressure Com-

pressor Pressure Ratio (LPCPR) and compressor efficien-

cy. The high-pressure assembly consists of a high-pressure 

compressor with a specified High-Pressure Compressor 

Pressure Ratio (HPCPR) and efficiency. Both compressors 

are located in the engine's inner bypass duct” 

This generated a breakdown of the engine compression 

in the model into three separate modules, but the turbine 

was still calculated as a single unit. Therefore, the next 

prompt was to ensure that separate turbines for the high and 

low-pressure spools were included in the model. After 

executing this command, a model was created, but the load 

between the turbines was incorrectly distributed. The load 

on the high-pressure turbine was defined by the temperature 

change in the combustion chamber, while the entire power 

demand for the compressors and fan was assigned to the 

low-pressure turbine. 

This issue was presented to ChatGPT, and it was then 

asked to correct the problem. Unfortunately, its modifica-

tions further degraded the model. It removed turbine effi-

ciency from the pressure calculations and instead applied it 

to the enthalpy change calculations. At this point, it became 

necessary to explicitly specify the exact changes that 

ChatGPT needed to implement to fix the model. 

The discussion with ChatGPT regarding the introduc-

tion of mechanical efficiency into the model for calculating 

the balance between the high-pressure turbine and high-

pressure compressor, and the low-pressure turbine and low-

pressure compressor, plus fan, failed. ChatGPT made 

changes to the model that did not align with the instructions 

provided, continuously treating the turbine efficiencies as 

mechanical efficiencies.  

To fix the algorithm, it was necessary to specify explic-

itly how the calculation of the turbine-compressor balance 

should be modified, providing the exact equations to be 
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incorporated. This allowed for the correction of the compu-

tational algorithm, accurately representing the operation of 

a two-shaft engine model. 

HPT cooling  

The next instruction concerned implementing bleed 

flows in the engine for turbine cooling, assuming that the 

entire cooling flow is supplied to the high-pressure turbine 

and then returns to the main flow.  

A prompt was used in the form of: “Please correct this 

model to account for a bleed flow of 8% of the core mass 

flow after the high-pressure compressor. Direct this flow to 

the high-pressure turbine for cooling. Incorporate the ap-

plied cooling into the turbine's work balance and adjust the 

combustion chamber calculations to reflect the change in 

mass flow due to this bleed.” 

 

High-Pressure Turbine (HPT) Power Calculation with Cooling 

Given: 

Bleed flow fraction: ṁbleed = β ṁcore, where β = 0.08   (8%) 

Corrected mass flow into the combustor: 

ṁcomb = ṁcore (1 − β) 

Total mass flow throught the HPT (includig cooling air): 

ṁHPT = ṁcomb + ṁbleed = ṁ
core  

Since the cooling flow is eventually reintroduced into the turbine stream, 
the total work extracted by the high-pressure turbine remains the same, 

but the enthalpy drop calculation must reflect the mixed flow 

Power Balance for HPT 

The high-pressure extracts power to drive the high-pressure compressor 

(HPC), considering mechanical transmission losses: 

WHPT =
WHPC

ηmech,HPT

 

where  

WHPC = ṁcomb cp,cold (T3 − T25) 

Thus, the corrected enthalpy drop in the HPT is: 

hHPT =
cp,cold (T3 − T25)

ηmech,HPT

 

The exit temperature of the HPT is 

T45 = T4 −
hHPT

cp,hot
 

and the pressure ratio acreoo the turbine considering isentropic efficien-

cy: 

P45 = P4 (1 −
1 − T45 T4⁄

ηHPT
)

γhot
γhot−1

 

Fig. 3. The turbofan HP spool model modification by ChatGPT for HPT 
 cooling 

 

The task was only partially completed. The mass flow 

after the compressor was corrected by reducing it for the 

bleed, but it was not added to the main flow at the high-

pressure turbine (HPT). The energy change caused by the 

addition of the cooling fluid was not accounted for in the 

turbine's work calculations. The example of HPT spool 

calculation modification by ChatGPT for request fulfilment 

is presented in Fig. 3 

Due to the need for further tedious work with the system 

to fix the model, the decision was made to withdraw from 

implementing these changes into the model. 

Semi-perfect gas model 

The next step involved an attempt to modify the gas 

properties in the engine model presented by ChatGPT. 

ChatGPT was requested to incorporate a semi-perfect gas 

model into the engine calculations and to provide refer-

ences for the adopted model. 

A model was introduced in which gas properties, such as 

specific heat and the isentropic exponent, were defined as 

functions of gas temperature, while the individual gas con-

stant was assumed to be a constant value. The source of the 

applied model was indicated as reference [24], which con-

tains a formulation for the variation of specific heat ex-

pressed as a polynomial. The model for calculating specific 

heat applied by ChatGPT was a 4
th
 degree polynominal:  

 Cp(T) = R(A + BT + CT2 +  DT3 + ET4)  (2) 

The polynomial coefficients proposed by ChatGPT are 

presented in Table 4 where: R – individual gas constant in 

[J/kg/K] and T – temperature in [K]. 

 
Table 4. Polynomial coefficient proposed by ChatGPT 

Coefficient Value 

A 0.992313 

B 0.236688 

C –0.048898 

D 0.004388 

E –0.000106 

 

ChatGPT then prepared Matlab functions for calculating 

the specific heat: get_cp, isentropic exponent get_gama, 

and individual gas constant get_R as temperature-

dependent variables, and implemented the necessary modi-

fications in the engine model to use these functions for gas 

parameter calculations. 

The gas model, which, according to ChatGPT was dedi-

cated to air, was implemented for calculations involving both 

air and exhaust gases. However, a different approach was 

applied: in calculations for the cold flow, the values of cp and 

gama were computed based on the inlet temperature of each 

engine component. In contrast, for the hot flow (turbines), cp 

was calculated at the inlet temperature and used to determine 

the outlet temperature, while gama was computed for the 

mean temperature and used to calculate the outlet pressure.  

A code snippet illustrating this part of ChatGPT algorithm is 

shown in Fig. 4. According to the literature [4, 7], the rec-

ommended approach in this regard is to use the mean tem-

perature to determine the gas properties used in the calcula-

tions for each individual component. This approach requires 

the application of iterative calculations. 

 

Fig. 4. Matlab code for HP shaft components calculation 
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To address this issue, ChatGPT was first asked to intro-

duce a combustion gas model for calculations in the turbine 

and exhaust nozzle, taking into account that the working 

fluid in these sections is the product of hydrocarbon fuel 

combustion, with the fuel-air mass flow rate being approx-

imately 2% relative to the mass flow rate of the air. This 

level of fuel burnt mass to airflow mass ratio is typical for 

turbofan engines and is used in numerous sources in the 

literature [4, 8, 23, 24]. 

ChatGPT proposed the model given in Equation (3), 

where the gas constant R and constant pressure heat value 

Cp are expressed in [J/kg/K], and the isentropic exponent 

gama is dimensionless. Based on the provided equations, it 

developed functions which were then implemented into the 

engine's computational model. 

 

R = 291
Cp(T) = 1100 + 0.1 T − 10−5 T2 +  10−9 T3

gama = Cp/(Cp − R)
  (3) 

 

Fig. 5. The results of the specific heat calculations for the gas model 

proposed by ChatGPT and determined according to the model in [7] for air 

 and combustion product of fuel/air ratio 0.02 

 

To verify the provided equations, a comparison was 

made with the model presented in [7], which is consistent 

with the model from reference [24], cited by ChatGPT as 

the source material. The comparison of the specific heat 

calculations for air and exhaust gases produced for a mass 

ratio of 2% fuel to air in the temperature range occurring in 

a turbofan engine is shown in Fig. 5. The differences in the 

calculated values are evident, as well as a different pattern 

of changes in the resulting curves, especially for combus-

tion products. 

ChatGPT implemented a semi-perfect gas model across 

the entire engine simulation by introducing additional func-

tions to compute gas properties. In the case of compressors, 

the model determined gas parameters based on the inlet 

temperature to each compressor stage. These values were 

then used to calculate the component's thermodynamic 

performance and the properties of the airflow downstream. 

For turbines, the methodology applied was inconsistent. 

While the enthalpy drop across the compressor was calcu-

lated using the specific heat evaluated at the mean tempera-

ture consistent with standard engineering practices, 

ChatGPT applied varying approaches in the turbine section. 

In some cases, gas properties such as specific heat and the 

isentropic exponent were determined based on the inlet 

temperature (Fig. 6 underscore red line); in other instances, 

these properties were evaluated at the average temperature 

across the component (Fig. 6 underscore yellow line), and 

sometimes they were assessed according outlet temperature 

(Fig. 6 underscore green line). Notably, in certain sections 

of the engine model, both approaches were used simultane-

ously for different thermodynamic parameters within the 

same control volume, leading to internal inconsistencies in 

the treatment of gas properties. 

 

Fig. 6. Code section implementing semi perfect gas model in the perfor-
 mance calculation for the high-pressure and low-pressure turbines 

 

According to literature [4, 7], the recommended meth-

odology for such thermodynamic simulations involves 

computing the average specific heat for each component 

and then using it to derive other gas properties. ChatGPT’s 

implementation deviated from this standard, resulting in 

inconsistencies in the application of gas property models 

across engine components. It also influenced the calculation 

results, which are given in Table 5 after using the model 

generated by ChatGPT. 

It can be observed that, despite the previously identified 

shortcomings in the model formulation, the results deviate 

only slightly from the expected values. The thrust is mar-

ginally lower than the value obtained in the earlier model 

(see Table 3) and is 1.8% higher than the results of the 

“correct model”, but it remains within the range specified 

by the manufacturer (see Table 2). The specific fuel con-

sumption increased to a value outside the manufacturer's 

specified range, exceeding the maximum limit by nearly 

9%. Eliminating the identified modeling deficiencies would 

undoubtedly improve these results, which are already rea-

sonably close to the actual values. A discussion with 

ChatGPT was conducted to address this issue; however, the 

implemented modifications did not yield the desired im-

provements, and further attempts to correct the model were 

therefore discontinued in this research. 

 
Table 5. Calculation results for the model generated by ChatGPT with the 

semi-perfect gas model 

Parameter ChatGPT semi perfect gas model 

Takeoff thrust [kN] 102.4 

TSFC [g/(kNs)] 11.67 
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4. Summary and conclusions 
The conducted discussion with ChatGPT 4.0 focused on 

the progressive development and refinement of the turbofan 

engine performance model, incorporating both thermody-

namic and gas property improvements. Starting from  

a simplified configuration, successive enhancements were 

introduced to account for non-ideal component efficiencies, 

realistic bypass and cooling flow modeling, and the imple-

mentation of a semi-perfect gas model with temperature-

dependent properties. 

Throughout the process, ChatGPT was able to generate 

computational model and provide explanations aligned with 

general engineering practice. However, numerous issues 

were encountered, particularly regarding consistent applica-

tion of gas property calculations, correct distribution of 

work between turbines and compressors, and the handling 

of cooling and bleed flows. In several instances, the chang-

es implemented by ChatGPT did not follow the provided 

instructions or introduced new errors, requiring precise 

step-by-step guidance and manual corrections. 

Despite these challenges, the final model yielded results 

that were relatively close to those reported by engine manu-

facturers and validated by other verified simulation models. 

Thrust levels fell within the expected range, and specific 

fuel consumption, although slightly higher than desired, 

remained within an acceptable deviation considering the 

model limitations. 

It was also observed that ChatGPT performed very reli-

ably when implementing requested modifications into the 

numerical engine model. Its ability to translate instructions 

into functioning MATLAB code was consistently accurate 

and error-free. 

In conclusion, while ChatGPT demonstrates a useful ca-

pacity for supporting the development of engine performance 

models, its effectiveness is limited by inconsistency in com-

plex thermodynamic logic and a need for iterative correction 

when modeling advanced physical processes. This indicates 

that the data generated by ChatGPT is still not entirely trust-

worthy. They must be verified by experts, whose intervention 

is very often necessary to correct and eliminate errors.  

As such, at the current stage of development, close user 

supervision and technical validation remain essential when 

using LLMs like ChatGPT for engineering design and anal-

ysis tasks. However, it is expected that these tools will 

become increasingly capable and reliable in supporting 

model development in the near future. Comparative studies 

between the performance of ChatGPT 3.5 and 4.0 at work 

show a significant improvement in task execution between 

these versions [30]; therefore, it is to be expected that the 

next version of the program will perform even better in this 

respect. 

It should also be noted that the quality of user input – 

particularly well-structured prompts and precise instruc-

tions – plays a critical role in achieving accurate results. 

While the evolution of human–AI collaboration in this area 

holds significant potential, it was not the focus of the pre-

sent study. 

 

Nomenclature 

BPR  bypass ratio 

CPR  compressor pressure ratio 

F thrust 

FAR fuel air ratio 

FPR fan pressure ratio 

h enthalpy 

LLMs Large Language Models 

OPR overall pressure ratio  

p pressure 

SFC specific fuel consumption 

T temperature 

TIT turbine inlet temperature 

TSFC takeoff specific fuel consumption 

V velocity 

W work 

 

Bibliography 

[1]  Bednarz A, Kabalyk K, Jakubowski R, Bartłomowicz R. 

Numerical study on sensitivity of turbofan engine perfor-

mance to blade count of centrifugal compressor impeller. 

Energies. 2023;16(14):5251.  

 https://doi.org/10.3390/en16145251 

[2]  Catana RM, Dediu G. Analytical calculation model of the 

TV3-117 turboshaft working regimes based on experimental 

data. Appl Sci. 2023;13(19):10720.  

 https://doi.org/10.3390/app131910720 

[3]  CFM International. CFM56. Wikipedia. 

https://en.wikipedia.org/wiki/CFM_International_CFM56#ci

te_note-cfm56-2-61 

[4]  Cumpsty N, Heyes A. Jet propulsion: a simple guide to the 

aerodynamics and thermodynamic design and performance 

of jet engines. 3rd ed. Cambridge: Cambridge University 

Press 2015. https://doi.org/10.1017/CBO9781316223116 

[5]  Deng W, Xu Y, Ni M, et al. Multi-fidelity simulation of gas 

turbine overall performance by directly coupling high-

fidelity models of multiple rotating components. J Therm 

Sci. 2024;33:1357-1378.  

 https://doi.org/10.1007/s11630-024-1975-3 

[6]  Ege DN, Øvrebø HH, Stubberud V, Berg MF, Elverum C, 

Steinert M et al. ChatGPT as an inventor: eliciting the 

strengths and weaknesses of current large language models 

against humans in engineering design. Artificial Intelligence 

for Engineering Design, Analysis and Manufacturing. 2025; 

39:e6. https://doi.org/10.1017/S0890060425000010 

[7]  Guha A. An efficient generic method for calculating the 

properties of combustion products. P I Mech Eng A-J Power 

Energy. 2001;215(3):375-387.  

 https://doi.org/10.1243/0957650011538596 

[8]  Hill PG, Peterson CR. Mechanics and thermodynamics of 

propulsion. Reading, MA: Addison-Wesley 1965. 

[9]  Jakubowski R. Evaluation of performance properties of two 

combustor turbofan engine. Eksploat Niezawodn. 2015; 

17(4):575-581. https://doi.org/10.17531/ein.2015.4.13 



 

Application of ChatGPT in the generation of a numerical performance model of a turbofan engine  

COMBUSTION ENGINES, 0000;XXX(X) 11 

[10]  Jakubowski R, Bednarz A, Rogalski Ł. Study of the effects 

of heat exchanger location on turbofan engine performance. 

Adv Sci Technol Res J. 2024;18(4):355-368.  

 https://doi.org/10.12913/22998624/189464 

[11]  Jakubowski R, Jakliński P. A practical approach to modeling 

and performance analysis of a turboshaft engine using 

Matlab. Appl Sci. 2024;14(23):11373.  

 https://doi.org/10.3390/app142311373 

[12]  Kabalyk K, Bednarz A, Kantyka K. Fatigue safety factor of 

a transonic centrifugal compressor impeller subject to blade 

thickness. Scientific Reports. 2025;15:18693.  

 https://doi.org/10.1038/s41598-025-03776-0 

[13]  Kabashkin I, Misnevs B, Zervina O. Artificial intelligence in 

aviation: new professionals for new technologies. Appl Sci. 

2023;13(21):11660. https://doi.org/10.3390/app132111660 

[14]  Kozakiewicz A, Ludwiczak A. Analysis of nitrogen oxide 

emissions generated by the F100-PW-229 turbine aircraft 

engine, performed using the gasturb software. Problems of 

Mechatronics Armament Aviation Safety Engineering. 

2025;16(1):9-20. https://doi.org/10.5604/01.3001.0055.0333 

[15]  Krus P. Large language model in aircraft system design. 

Proceedings of the 34th Congress of the International Coun-

cil of the Aeronautical Sciences; 2024. Florence.  

 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-211541 

[16]  Kulczycki A, Przysowa R, Białecki T, Gawron B, Jasiński 

R, Merkisz J et al. Empirical modeling of synthetic fuel 

combustion in a small turbofan. Energies. 2024;17(11): 

2622. https://doi.org/10.3390/en17112622 

[17]  Kuźniar M, Pawlak M, Orkisz M. Comparison of pollutants 

emission for hybrid aircraft with traditional and multi-

propeller distributed propulsion. Sustainability. 2022; 

14(22):15076. https://doi.org/10.3390/su142215076 

[18]  Maciorowski D, Ludwiczak A, Kozakiewicz A. Hydrogen, 

the future of aviation. Combustion Engines. 2024;197(2): 

126-131. https://doi.org/10.19206/CE-178375 

[19]  Loryś SM, Orkisz M. Neural network approach to compres-

sor modelling with surge margin consideration. Archives of 

Thermodynamics. 2022;43(1):89-108.  

 https://doi.org/10.24425/ather.2022.140926  

[20]  Majka A, Muszyńska-Pałys J. Analysis of the performance 

of an aircraft powered by hybrid propulsion. Combustion 

Engines. 2023;193(2):45-51.  

 https://doi.org/10.19206/CE-161107 

[21]  Marszałek N. Performance analysis of turbofan engine with 

additional combustion chamber fueled by alternative fuel. 

Combustion Engines. 2019;179(4):249-253.  

 https://doi.org/10.19206/CE-2019-441 

[22]  Marszałek N. The impact of thermodynamics parameters of 

turbofan engine with ITB on its performance. Combustion 

Engines. 2020;182(3):16-22.  

 https://doi.org/10.19206/CE-2020-303 

[23]  Mattingly JD, Boyer KM. Elements of propulsion: gas 

turbines and rockets. 2nd ed. Reston, VA: American Insti-

tute of Aeronautics and Astronautics 2016.  

[24]  McBride BJ, Zehe MJ, Gordon S. NASA Glenn coefficients 

for calculating thermodynamic properties of individual spe-

cies. Cleveland, OH: NASA Glenn Research Center 2002. 

[25]  Muchowski R, Gubernat SM. Influence of axial compressor 

model simplification and mesh density on surge margin 

evaluation. Adv Sci Technol Res J. 2021;15(3):243-253.  

 https://doi.org/10.12913/22998624/140541 

[26]  Pasieka M, Grzesik N, Kuźma K. Simulation modeling of 

fuzzy logic controller for aircraft engines. Int J Comput. 

2017;16:27-33. https://doi.org/10.47839/ijc.16.1.868 

[27]  Pawlak M, Kuźniar M. Performance and emission of the 

aircraft with hybrid propulsion during take-off operation cy-

cle. Adv Sci Technol Res J. 2024;18(1):155-166.  

 https://doi.org/10.12913/22998624/177254 

[28]  Pierson KC, Ha MJ. Usage of ChatGPT for engineering 

design and analysis tool development. AIAA SCITECH 

2024 Forum. 2024; Orlando, FL. Reston, VA: American In-

stitute of Aeronautics and Astronautics.  

 https://doi.org/10.2514/6.2024-0914 

[29]  Pradas Gómez A, Krus P, Panarotto M, Isaksson O. Large 

language models. Proceedings of the Design Society. 2024; 

4:2197-206. https://doi.org/10.1017/pds.2024.222 

[30]  Pradas Gómez A, Panarotto M, Isaksson O. Evaluation of 

different large language model agent frameworks for design 

engineering tasks. Proceedings of the NordDesign 2024; 

2024; Reykjavik, Iceland. Glasgow, UK: The Design Socie-

ty. 2024:693-702.  

 https://doi.org/10.35199/NORDDESIGN2024.74 

[31]  Romagnosi L, Li YC, Mezine M, Teixeira, M, Vilmin S, 

Anker JE et al. Methodology for steady and unsteady full-

engine simulations. Proceedings of the ASME Turbo Expo 

2019 Turbomachinery Technical Conference and Exposi-

tion. Phoenix, USA, 17–21 June 2019. 

[32]  Timperley LR, Berthoud L, Snider C, Tryfonas T. Assess-

ment of large language models for use in generative design 

of model based spacecraft system architectures. J Eng Des. 

2025;36(4):550-570.  

 https://doi.org/10.1080/09544828.2025.2453401 

[33]  Ventosa-Molina J, Lange M, Mailach R, Fröhlich, J. Study 

of relative endwall motion effects in a compressor cascade 

through direct numerical simulations. ASME J Turbomach. 

2021;143(1):011005. https://doi.org/10.1115/1.4049101 

[34]  Wang L, Chou J, Zhou X, Tien A, Baumgartner DM. Avia-

tionGPT: a large language model for the aviation domain. 

AIAA SciTech. 2024.  

 https://doi.org/10.48550/arXiv.2311.17686  

[35]  Wygonik P. Dobór zespołu napędowego do samolotu wielo-

zadaniowego według kryterium zadania lotniczego (in Po-

lish). Oficyna Wydawnicza Politechniki Rzeszowskiej. Rze-

szów 2024. 

 

Robert Jakubowski, DEng. – Aerospace Technology 
Department, Rzeszów University of Technology, 

Poland. 

e-mail: robert.jakubowski@prz.edu.pl 

 
  

Marek Szumski, DEng. – Aerospace Technology 
Department, Rzeszów University of Technology, 

Poland. 

e-mail: marek.szumski@prz.edu.pl 

 

  

 

 

  

 

 


