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of a turbofan engine

This paper presents a study on the application of ChatGPT 4.0 in developing a numerical model for the perfor-
mance analysis of a turbofan engine. The modeling process began with general queries regarding numerical
approaches to engine simulation. The initial model proposed by ChatGPT appeared plausible but contained
significant conceptual errors. Through iterative dialogue and refinement, these errors were gradually identified
and corrected, ultimately resulting in a valid engine model. This intermediate model included two rotating
components (fan and core spool) and assumed an ideal gas with distinct thermodynamic properties in the cold
and hot sections of the engine. Based on this model, ChatGPT successfully generated numerical code for
implementation in the MATLAB environment, handling this task with high accuracy and flexibility. Further
efforts focused on extending the model to include air extraction for turbine cooling, internal engine bleeds, and
the application of a semi-perfect gas model to describe the working fluid more realistically. In these more
advanced areas, ChatGPT'’s performance declined significantly. Despite prompting and corrective guidance, it
was unable to produce a fully functional and physically accurate implementation of the enhanced model. The
study concludes that while ChatGPT demonstrates strong capabilities in translating well-defined physical
models into numerical code, especially within MATLAB, it remains unreliable in constructing or modifying
complex thermodynamic models without significant user oversight. Nonetheless, its use can significantly
accelerate the implementation phase of numerical engine modeling when guided by an experienced user.
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1. Introduction

The generation of accurate, reliable, and above all prob-
lem-adequate models constitutes a critical issue in both
engineering practice and scientific research. A substantial
body of literature is dedicated to the challenges of modeling
technical systems as well as to the tools and methodologies
employed in this context. This aspect is particularly promi-
nent in aerospace engineering, where model-based investi-
gations play a vital role not only in testing and optimizing
existing designs but also in supporting the development of
new concepts and their optimisation [35].

The full spectrum of modeling challenges in the field of
aeronautics is highly complex due to the vast scope of the
subject. The present study focuses on modeling the propul-
sion system, which is itself a highly complex technical
system that requires a multidimensional analytical ap-
proach. Consequently, depending on the specific research
objectives, engine modeling can be addressed from various
perspectives, taking into account both the intended purpose
of the study and the required level of model fidelity [23].
Research involving numerical modeling addresses a range
of issues, including engine performance, as demonstrated in
studies [2, 5, 11, 20, 35]; environmental impact, such as
pollutant and greenhouse gas emissions [14, 16-18, 27];
structural integrity assessments [12]; and flow analysis
within the engine or its selected components [1, 25, 31, 33].
In many cases, these issues are interrelated, with the results
of one type of analysis serving as input data for subsequent
analyses. For instance, in [1], the results of gas-dynamic
parameter calculations in the engine control stations are
used as boundary conditions for flow analysis in the com-
pressor rotor, and the outcomes of this analysis are subse-

quently applied in evaluating engine performance. Similar-
ly, in [16], engine operating parameters obtained from per-
formance calculations are used as input for emissions mod-
eling, while in [12], flow simulations form the basis for the
structural analysis of the compressor. Consequently, there is
a growing trend toward integrating models operating in
different computational domains to improve the efficiency
of data exchange between them. This facilitates the devel-
opment of computational systems that are increasingly
becoming complex, multidisciplinary tools.

Steady-state analyses are not always sufficient; in many
cases, it is necessary to investigate unsteady phenomena —
not only in scenarios involving changes in engine operating
conditions, such as acceleration or deceleration, but also
under steady-state operation to assess interactions between
rotating and stationary components of the engine [31, 33],
where unsteady effects are also analyzed. However, such
detailed modeling requires significant computational re-
sources and time for model setup and execution, resulting
in high research costs. In many cases, a significantly more
cost-effective approach is used, involving a variation in the
level of model fidelity across engine components — known
as the multifidelity approach — as demonstrated in studies
[1, 5, 25]. In this method, a selected engine module, such as
the compressor flow path [5, 25], is modeled in detail using
a more complex model, while other components are repre-
sented using simplified methods. This approach enables
a substantial reduction in computational time and cost while
maintaining high accuracy within the targeted area of inves-
tigation.

Engine performance calculations are still predominantly
based on quasi-one-dimensional (pseudo-1D) analysis,
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which relies on averaged thermodynamic parameters of the
flow in the engine’s control stations. This approach is rep-
resented in studies such as [2, 4, 9-11, 21-23], where flow
parameters are determined in selected control sections to
evaluate engine performance. The modeling is grounded in
the conservation equations of mass, momentum, and ener-
gy. At the same time, the processes occurring in individual
engine components are characterized using efficiency pa-
rameters that account for deviations from idealized, re-
versible transformations.

A similar approach is employed by dedicated computa-
tional tools, such as the GasTurb Program, Gas Turbine
Simulation Program (GSP), and the Propulsion Object-
Oriented Simulation Software (PROOSIS) [2], which are
advanced tools for analyzing the performance of gas turbine
engines. Their additional computational modules also ena-
ble the determination of other operating parameters of a jet
engine, as demonstrated in [14], where the GasTurb soft-
ware was used to calculate NO, emissions for the F100-
PW-229 engine.

In [2], it was noted that the use of commercial tools re-
quires access to the licenses, which could be expensive.
Moreover, users frequently lack access to the program's
source code, which prevents them from adapting it to meet
the needs of their research, thereby reducing the research-
er’s role to that of an operator rather than a developer. For
this reason, proprietary in-house programs for aero engine
performance calculations continue to be developed, based
on the laws of physics and chemistry and tailored to specif-
ic computational requirements, as demonstrated in studies
such as [2, 9-12, 21]. Additionally, the development of
numerical methods enables their adaptation for creating
new tools in the field of aircraft engine model preparation.
For example, in [29], fuzzy logic was employed to develop
an engine model, whereas in [19], neural networks were
used to construct a compressor map model for engine per-
formance analysis.

In recent years, emerging and rapidly advancing artifi-
cial intelligence (Al) technologies have opened up new
possibilities for model development and analytical research.
Recent advancements in Al, particularly the emergence of
Large Language Models (LLMs), have opened new ave-
nues for supporting engineering design and computational
tasks [29, 30]. Various tools based on LLMs are currently
being developed by companies such as Google, Microsoft,
and others. One of the most widely recognized examples is
ChatGPT. ChatGPT, in particular, has been explored as
a tool for assisting in code development, algorithm genera-
tion, and even conceptual design ideation, with early results
indicating both its versatility and limitations [6, 28].

Recent studies have shown that LLMs can assist in con-
ceptual design, requirement generation, and early-phase
engineering workflows [15]. They facilitate the automation
of repetitive tasks, offer support in code generation and
debugging, and contribute to technical documentation with
high efficiency [28]. Domain-specific tuning, as seen in
AviationGPT, further enhances its applicability to special-
ized tasks, including aviation safety reports and aircraft
systems analysis [34].

LLMs are also being considered as collaborative agents
in engineering design processes. When used within struc-
tured frameworks, they support ideation, generate architec-
tural proposals, and facilitate cross-domain communication
[29, 30, 32]. Their ability to process large volumes of data
and produce meaningful summaries or insights makes them
particularly useful in system-level engineering tasks.

In the context of aviation, artificial intelligence tools,
including LLMs, are viewed as key enablers of next-
generation operations and training. Their integration is
linked to changes in the required skillsets for aviation pro-
fessionals, with an increasing emphasis on Al literacy and
human-machine collaboration [13].

Despite their strengths, the studies also highlight signif-
icant limitations. LLMSs often produce outputs that are syn-
tactically correct but semantically flawed or factually inac-
curate [28, 32]. They may hallucinate technical content,
misinterpret standards, or apply inconsistent logic in com-
plex engineering tasks. These risks are particularly critical
in safety-sensitive fields, such as aerospace.

Furthermore, performance across different LLM frame-
works varies considerably. Their effectiveness in handling
highly specific or quantitative engineering tasks remains
limited unless paired with dedicated tools or domain-
specific training [30]. Human validation and oversight are
still essential to ensure correctness and reliability.

This paper examines the practical application of
ChatGPT 4.0 in developing a numerical performance model
for a turbofan engine. The study employed the free version
of ChatGPT, a widely accessible tool used by a broad
community of users. The primary objective was to utilize
this tool to assist in developing a turbofan engine perfor-
mance model, which would then be translated into executa-
ble code within a selected computing environment — in this
case, MATLAB. The aim was to assess the level of model
complexity that could be achieved through such an ap-
proach, as well as to evaluate the correctness of the result-
ing model. In doing so, we sought to determine whether
a user without prior expertise in this specific domain could
generate a valid computational model, potentially applica-
ble to broader tasks such as aircraft performance analysis or
numerical simulation-based testing.

2. ChatGPT utilization for turbofan engine

calculation

This study investigates whether ChatGPT 4.0, available
in its free version at the beginning of 2025, is capable of
generating a turbofan engine performance model. The focus
is on evaluating the model initially proposed by the tool and
assessing how well it aligns with standard methods com-
monly used for such analyses. The generated results are
systematically validated using established and verified
computational tools previously developed for this purpose.

In cases where inconsistencies or errors are identified,
an iterative dialogue is conducted with the language model
to address and correct the issues. All modifications are
directly implemented into the computational code and con-
tinuously validated against the reference model.

Once a correct elementary performance model is estab-
lished, further work will focus on its expansion to include
elements of more advanced models—for example, incorpo-
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rating compressor bleed flows, turbine cooling flows, and
working fluid properties modeled using semi-perfect gas
formulations. The overall workflow is illustrated in the
schematic diagram presented in Fig. 1.

to ChatGPT

L
ChatGPT Generates Initial
Performance Model

[ Initial Model Request }

Preliminary Verification Update Model

Numerical code
preparation

Discussion with ChatGPT
to Correct Errors

Validation Against Existing
model

correct?
yes

Extend Model with Advanced Features:
- Compressor bleed flows andTurbine cooling
- Working fluid modeled as semi-perfect gas

new task

Fig. 1. Workflow for turbofan engine model development using ChatGPT

2.1. Turbofan engine model

In the first stage, ChatGPT was asked to develop a nu-
merical model for calculating the performance of a turbofan
engine. The instruction was formulated as follows:

“Could you provide the algorithm for turbofan engine
thrust (F) and specific fuel consumption (SFC) calculation
for defined bypass ratio (BPR) fan pressure ratio (FPR),
compressor pressure ratio (CPR), turbine Inlet Tempera-
ture (TIT) mass flow rate. Engine model should include
pressure losses and rotating part efficiencies”.

The GPT response provided a computational algorithm
that was structured with a clear specification of input data
and a numerical model. Input data included fundamental
engine parameters such as bypass ratio (BPR), fan pressure
ratio (FPR), compressor pressure ratio CPR, turbine inlet
temperature TIT, and engine mass flow rate my. Next,
parameters characterizing component efficiencies and flow
pressure losses were specified. Finally, the input data in-
cluded ambient conditions, such as air temperature TO and
pressure PO, as well as gas properties, including specific
heat capacity, isentropic exponent, and individual gas con-
stants.

A complete computational model of the engine generat-
ed by ChatGPT is presented in Fig. 2. It is worth noting that
the overall structure of the model was reasonably well-
prepared and logically organized, enabling the calculation
of the specified parameters: engine thrust (F) and specific
fuel consumption (SFC). However, several errors were
present in the model, which could have affected the accura-
cy of the calculations. Incorrect or insufficiently precise
formulas are summarized in Table 1.

The formulas presented in Table 1 appear similar to the
correct ones but contain errors that would lead to discrep-
ancies between the obtained results and the models found in
the literature [4, 8, 23] cited by ChatGPT as the source for

developing the algorithm. Additionally, the specific thrust
was defined only in relation to the mass flow rate in the
core flow ST = T/m, and in the generated equation for
specific fuel consumption, the fuel mass flow parameter
was used, despite not being determined in the model. Fur-
thermore, the section following the fan, which is conven-
tionally referred to as station 13 in bypass flow and 23 in
core flow, is labeled as station 2 in the algorithm prepared
by ChatGPT.

Step-by Step Calculations

1. Fanand Bypass Steram:
e  Fan exit pressure and temperature:

P, = P, FPR

T, =T, (1 + :]]—f(FPR(Y’l)/V - 1))
c

e  Bypass flow exit conditions (assuming isentropic expansion in
bypass nozzle):

Pbypass exit = P2 T[bypass

Tbypass exit = Tbypass
e  Velocity of bypass stream

bepass = \/2 T]ncp (Tbypass exit — TO)

2. Core engine (Compressor Combustor and Turbine)

e  Compressor exit conditions:
P, = P, CPR

T;=T, (1 + %(CPR(V‘U/V - 1))
f

e Turbine exit conditions:
e Auvailable enthalpy drop across turbine:

Ahy = Cp(T4 —Ty)
e Turbine exit temperature:

T Ah,
5 4 M
. Turbine exit pressure
y/(v-1)

TS
PS = P3 Ty (T—)

4

e Velocity of core exhaust

Veore = ’2 T]ncp(TS —To)

3. Thrust Calculation

The total thrust is the sum of the momentum flux from the bypass and
core stream

F= rhbypass bepass + Megre Veore — Meotal Vo
where Vj is the freestream velocity
4. Fuel Flow and Specific Thrust
. Fuel-to-air ratio (FAR):

cp(Ty — T3)
FAR = -2
Ny, LHV
e Sopecific Thrust:
F
ST = -
mcore

e Specific Fuel Consumption (SFC):

fuel

spc = 2
__F

Fig. 2. Turbofan engine model generated by ChatGPT
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Table 1. Incorrect or insufficiently precise formulas generated by Chat GPT

Parameter

Formula given by ChatGPT

Correct formula [8]

Fan exit temperature

T, =T, (1 + % (FPRO-D/Y — 1))
c

1
T,=T, (1 + n—(FPR‘Y’l)/V - 1))
f

Compressor exit temperature

T,=T, (1 + % (CPRO-D/Y — 1))
f

1
T, =T, (1 + n—(CPR(V‘l)/V - 1))
c

Turbine enthalpy drop

Ah, = Cp(T4 —T3)

Ahe = Cp(T4 = Ts)

. . Ah
Turbine exit temperature Ts =T, — — Ts = T, — Ah,
n
Y
ine exi Ts) /07 1—Tys/Toy\ 71
Turbine exit pressure P = Pym, (T_4> P, = Py, (1 _ nth t4)

Velocity of core exhaust

Vcore = Znncp(TS - TO)

Vcore = Znn corecp(TS - TS st)

Velocity of bypass stream

bepass = \lznncp(Tbypass,ex - TO)

bepass = \/Znn bypasscp * \/Tbypass - Tbypas st

2.2. Engine computational algorithm in Matlab

ChatGPT was asked to generate an algorithm suitable
for execution in the Matlab environment. The algorithm
was prepared as a Matlab function, where the engine thrust
and specific fuel consumption were generated as output
data, while the input data included the fundamental parame-
ters of the turbofan engine and efficiencies of its compo-
nents. Additionally, ChatGPT suggested input data for the
calculations, as presented below, and described the calcula-
tion initialization process as shown below:

BPR = 6; % Bypass ratio [-]

FPR = 1.6; % Fan pressure ratio [-]

CPR = 30; % Compressor pressure ratio [-]
TIT =1400; % Turbine inlet temperature [K]
m_core = 20; % Core mass flow rate [kg/s]
eta f=0.9; % Fan efficiency [-]

eta ¢=0.88; % Compressor efficiency [-]
eta t=0.9; % Turbine efficiency [-]

eta n=0.98; 9% Nozzle efficiency [-]
pi_b=0.95; % Burner pressure loss factor [-]
pi_bp =0.98; % Bypass pressure loss factor [-]
TO =288; % Ambient temperature [K]

PO =101325; % Ambient pressure [Pa]

[F, SFC] = turbofan_calc(BPR, FPR, CPR, TIT, m_core,
eta f, eta_c, eta_t, eta_n, pi_b, pi_bp, TO, PO);

The proposed data appear reasonable for calculations of
an engine from the 1980s-1990s, as noted in [23]. They
correspond to operating conditions at zero flight speed
under ISA conditions. To adapt these data to the CFM-56-2
present-day engine [3], some parameters proposed by
ChatGPT were modified as follows:

FPR =1.45; % Fan pressure ratio [-]

CPR = 20; % Compressor pressure ratio [-]
m_core =52; % Core mass flow rate [kg/s]
TIT =1600; % Turbine inlet temperature [K]

The structure of the proposed computational algorithm
was also thoroughly analyzed. In the algorithm, unlike the
model presented in Fig. 2, the equations for the temperature
behind the fan and compressor were correctly formulated.
Additionally, the enthalpy drop across the turbine was
properly defined as the temperature drop between sections

4 and 5. This was determined based on the energy demand
of the fan and compressor, which is a correct approach that
was not included in the presented model. For the pressure
calculations behind the turbine, the algorithm, like the
model, used the isentropic expansion relationship (without
losses).

However, some errors were identified in the prepared
algorithm. One issue was the fuel consumption calculation,
which, although based on a fairly well-written equation,
incorrectly used the turbine efficiency instead of the com-
bustion chamber thermal efficiency. Furthermore, incorrect
equations for the exhaust gas velocity were repeated for
both engine nozzles. The formula for calculating engine
thrust was also incorrectly formulated as follows:

F= (mbypassvbypass + mcorevcore) - mtotal\/ YRairTO (1)
The equation (1) includes an incorrect expression for the

engine's velocity speed of sound formula /YR, T, instead
of flight speed.

To summarize this section, it is worth noting that
ChatGPT developed a plausible turbofan engine model. It
includes almost all the required elements characterizing the
performance of this type of engine. However, in many cas-
es, errors appear in the provided equations, which will
undoubtedly affect the accuracy of the calculations.
ChatGPT also developed a function for calculations in the
Matlab program. In the developed code, some errors pre-
sent in the model were eliminated, even though the issue
was never discussed. Nevertheless, the resulting computa-
tional algorithm still contains formulas that will lead to
errors in the obtained calculation data.

2.3. Comparison of engine calculation results

Based on the works [2, 7, 9, 23] a turbofan engine mod-
el in Matlab was prepared, which was called “Correct mod-
el”. This model was used to validate the calculation results
from the models prepared by ChatGPT. The data proposed
by ChatGPT after mentioned modification was used, sup-
plemented with missing information, such as the combus-
tion chamber efficiency, which was assumed to be 98%,
and calculations were performed. The results are summa-
rized in Table 2, along with a comparison to the available
data for the CFM-56 engine. The first three parameters
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(BPR, My, OPR) were assumed parameters represent the
input data assumed at the same level in the calculations
using both models. They are from the range of data given
for this engine in [3].

Table 2. Comparison of results from the ChatGPT-developed model, the
correct model, and the data for the CFM-56 engine [3]

Parameter ChatGPT Correct CFM-56-2
model data
BPR [-] 6 6 5.9-6
Mioral [KQ/S] 364 364 356-31
OPR [-] 31.9 31.9 30.5-31.8
Takeoff thrust [kN] 13.4 100.6 96-106.7
TSFC [g/(kNs)] 85.26 10.7 10.4-10.7

The ChatGPT algorithm calculation results show signif-
icant discrepancies compared to the correct engine model.
The calculation errors are at an unacceptable level. The
computed takeoff thrust is approximately 8 times lower,
and the TSFC is more than 8 times higher than what the
correct model should produce.

2.4. Improvement of the model through discussion

with ChatGPT

Based on the analysis of errors found in the model,
a discussion with ChatGPT was initiated to eliminate them.
The discussion started by pointing out that the exhaust gas
velocities from both nozzles were being calculated incor-
rectly. ChatGPT was asked to correct the exhaust gas veloc-
ity equations, considering full expansion in the nozzle. The
correction provided by ChatGPT was accurate.

The next comment concerned the flight velocity equa-
tion used in the calculation of engine thrust. ChatGPT was
asked to correct it by introducing the Mach number as an
additional variable to determine the flight velocity. Addi-
tionally, it was asked to include the dynamic compression
at the engine inlet (ram effect) in the calculations of tem-
perature and pressure before the fan. These suggestions
were correctly implemented in the engine model.

In the next steps, ChatGPT was asked to consider that
the turbine is not ideal and undergoes a non-isentropic
process by incorporating the isentropic efficiency in the
formula for the pressure behind the turbine. Next was
pointed out that for the combustion chamber, the thermal
efficiency of the combustion chamber should be used in-
stead of the turbine efficiency. Additionally, it was speci-
fied that the flow losses in the bypass duct should be con-
sidered in the calculation of the pressure in the external
nozzle. Finally, the value of specific heat for the flow in the
hot section of the engine was modified to align with typical
values used in literature [4, 23].

After implementing all these corrections into the model,
ChatGPT was asked to regenerate the function in the
Matlab environment. The modified function was used to
perform calculations for the previously used CFM-56 en-
gine data set. The calculation results are presented in Table
3. This time, the data shows a sufficient level of agreement
with the engine's reference data (see Table 2). The thrust
falls within the range of values reported for this engine, and
the specific fuel consumption is only slightly below the
minimum value. This would require only minor adjust-

ments to the model to achieve results within the expected
range.

Table 3. Results from the ChatGPT-corrected model

Parameter ChatGPT corrected model
Takeoff thrust [kN] 103.8
TSFC [g/(kNs)] 10.1

2.5. Expanding the engine model using ChatGPT

The initially prepared and improved model from
ChatGPT underwent further modifications better to align it
with the design of the analyzed engine. The modifications
were also aimed at using complex computational models of
the gas flowing in the engine. The modifications were im-
plemented in stages by sending targeted queries to the sys-
tem.

Two spool engine model

The first step was to separate the engine calculations in-
to two rotors, as the previously obtained model treated the
fan and compressor assembly as a single unit.

To achieve this, the following command was executed:
“Separate the computational model for the fan and com-
pressor assembly into two rotors, assuming that the low-
pressure rotor consists of a fan characterized by the Fan
Pressure Ratio (FPR) and fan efficiency, as well as a low-
pressure compressor defined by the Low-Pressure Com-
pressor Pressure Ratio (LPCPR) and compressor efficien-
cy. The high-pressure assembly consists of a high-pressure
compressor with a specified High-Pressure Compressor
Pressure Ratio (HPCPR) and efficiency. Both compressors
are located in the engine's inner bypass duct”

This generated a breakdown of the engine compression
in the model into three separate modules, but the turbine
was still calculated as a single unit. Therefore, the next
prompt was to ensure that separate turbines for the high and
low-pressure spools were included in the model. After
executing this command, a model was created, but the load
between the turbines was incorrectly distributed. The load
on the high-pressure turbine was defined by the temperature
change in the combustion chamber, while the entire power
demand for the compressors and fan was assigned to the
low-pressure turbine.

This issue was presented to ChatGPT, and it was then
asked to correct the problem. Unfortunately, its modifica-
tions further degraded the model. It removed turbine effi-
ciency from the pressure calculations and instead applied it
to the enthalpy change calculations. At this point, it became
necessary to explicitly specify the exact changes that
ChatGPT needed to implement to fix the model.

The discussion with ChatGPT regarding the introduc-
tion of mechanical efficiency into the model for calculating
the balance between the high-pressure turbine and high-
pressure compressor, and the low-pressure turbine and low-
pressure compressor, plus fan, failed. ChatGPT made
changes to the model that did not align with the instructions
provided, continuously treating the turbine efficiencies as
mechanical efficiencies.

To fix the algorithm, it was necessary to specify explic-
itly how the calculation of the turbine-compressor balance
should be modified, providing the exact equations to be
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incorporated. This allowed for the correction of the compu-
tational algorithm, accurately representing the operation of
a two-shaft engine model.

HPT cooling

The next instruction concerned implementing bleed
flows in the engine for turbine cooling, assuming that the
entire cooling flow is supplied to the high-pressure turbine
and then returns to the main flow.

A prompt was used in the form of: “Please correct this
model to account for a bleed flow of 8% of the core mass
flow after the high-pressure compressor. Direct this flow to
the high-pressure turbine for cooling. Incorporate the ap-
plied cooling into the turbine's work balance and adjust the
combustion chamber calculations to reflect the change in
mass flow due to this bleed.”

High-Pressure Turbine (HPT) Power Calculation with Cooling
Given:

Bleed flow fraction: myeeq = B Mcore, Where § = 0.08 (8%)
Corrected mass flow into the combustor:

l'hcomb = 1'.ncore (1 - B)
Total mass flow throught the HPT (includig cooling air):
Mypr = Meomp + Mpleed = Meore
Since the cooling flow is eventually reintroduced into the turbine stream,
the total work extracted by the high-pressure turbine remains the same,
but the enthalpy drop calculation must reflect the mixed flow

Power Balance for HPT

The high-pressure extracts power to drive the high-pressure compressor
(HPC), considering mechanical transmission losses:
_ Wipc
WHPT -

nmech,HPT
where

Whpe = Meomp Cp,cold (T3 - TZS)
Thus, the corrected enthalpy drop in the HPT is:
_ Cpold (T3 B TZS)

hHPT -
T]mech,HPT
The exit temperature of the HPT is
hypr
Tys =Ty —
Cp,hot

and the pressure ratio acreoo the turbine considering isentropic efficien-
cy:

NHPT

1 T /T Yhot
— Yhot—1
Py = p4<1_$> o

Fig. 3. The turbofan HP spool model modification by ChatGPT for HPT
cooling

The task was only partially completed. The mass flow
after the compressor was corrected by reducing it for the
bleed, but it was not added to the main flow at the high-
pressure turbine (HPT). The energy change caused by the
addition of the cooling fluid was not accounted for in the
turbine's work calculations. The example of HPT spool
calculation modification by ChatGPT for request fulfilment
is presented in Fig. 3

Due to the need for further tedious work with the system
to fix the model, the decision was made to withdraw from
implementing these changes into the model.

Semi-perfect gas model
The next step involved an attempt to modify the gas
properties in the engine model presented by ChatGPT.

ChatGPT was requested to incorporate a semi-perfect gas
model into the engine calculations and to provide refer-
ences for the adopted model.

A model was introduced in which gas properties, such as
specific heat and the isentropic exponent, were defined as
functions of gas temperature, while the individual gas con-
stant was assumed to be a constant value. The source of the
applied model was indicated as reference [24], which con-
tains a formulation for the variation of specific heat ex-
pressed as a polynomial. The model for calculating specific
heat applied by ChatGPT was a 4™ degree polynominal:

Cp(T) = R(A + BT + CT? + DT? + ET%) )

The polynomial coefficients proposed by ChatGPT are
presented in Table 4 where: R — individual gas constant in
[J/kg/K] and T — temperature in [K].

Table 4. Polynomial coefficient proposed by ChatGPT

Coefficient Value
A 0.992313
B 0.236688
C -0.048898
D 0.004388
E -0.000106

ChatGPT then prepared Matlab functions for calculating
the specific heat: get _cp, isentropic exponent get gama,
and individual gas constant get R as temperature-
dependent variables, and implemented the necessary modi-
fications in the engine model to use these functions for gas
parameter calculations.

The gas model, which, according to ChatGPT was dedi-
cated to air, was implemented for calculations involving both
air and exhaust gases. However, a different approach was
applied: in calculations for the cold flow, the values of ¢cp and
gama were computed based on the inlet temperature of each
engine component. In contrast, for the hot flow (turbines), cp
was calculated at the inlet temperature and used to determine
the outlet temperature, while gama was computed for the
mean temperature and used to calculate the outlet pressure.
A code snippet illustrating this part of ChatGPT algorithm is
shown in Fig. 4. According to the literature [4, 7], the rec-
ommended approach in this regard is to use the mean tem-
perature to determine the gas properties used in the calcula-
tions for each individual component. This approach requires
the application of iterative calculations.

% High-Pressure Compressor (HPC) exit conditions
cp_cold = get_cp(T25);
gamma_cold = get_gamma(T25);
P3 = P25 * HPCFR;

T3 = T25 * (1 + (1/eta_hpc) * (HPCPR*((gamma_cold-1)/gamma_cold) - 1));
% Pressure drop in the burner

P4 = P3 * pi_b;

% Fuel-Air Ratio (FAR) with burner efficiency

cp_hot = get_.
LHY = 43e6; % (jet fuel lower heating value)

FAR = cp_hot * (TIT -

T3) / (eta_b * LHV);
% High-Pressure Turbine (HPT) calculations
cp_cold = get_cp(T3);
h_hpt = cp_cold * (T3 - T25) / eta_mech_hpt;

T45 = TIT - h_hpt / cp_hot;
gamma_hot = get_gamma((TIT + T45) / 2);

P45 = P4 * (1 - (1 - (T45/TIT)) / eta_hpt)~(gamma_hot / (gamma_hot - 1));

Fig. 4. Matlab code for HP shaft components calculation
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To address this issue, ChatGPT was first asked to intro-
duce a combustion gas model for calculations in the turbine
and exhaust nozzle, taking into account that the working
fluid in these sections is the product of hydrocarbon fuel
combustion, with the fuel-air mass flow rate being approx-
imately 2% relative to the mass flow rate of the air. This
level of fuel burnt mass to airflow mass ratio is typical for
turbofan engines and is used in numerous sources in the
literature [4, 8, 23, 24].

ChatGPT proposed the model given in Equation (3),
where the gas constant R and constant pressure heat value
Cp are expressed in [J/kg/K], and the isentropic exponent
gama is dimensionless. Based on the provided equations, it
developed functions which were then implemented into the
engine's computational model.

R =291
Cp(T) =1100+0.1T—-10"°T?+ 107° T3 €))
gama = Cp/(Cp — R)
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Fig. 5. The results of the specific heat calculations for the gas model
proposed by ChatGPT and determined according to the model in [7] for air
and combustion product of fuel/air ratio 0.02

To verify the provided equations, a comparison was
made with the model presented in [7], which is consistent
with the model from reference [24], cited by ChatGPT as
the source material. The comparison of the specific heat
calculations for air and exhaust gases produced for a mass
ratio of 2% fuel to air in the temperature range occurring in
a turbofan engine is shown in Fig. 5. The differences in the
calculated values are evident, as well as a different pattern
of changes in the resulting curves, especially for combus-
tion products.

ChatGPT implemented a semi-perfect gas model across
the entire engine simulation by introducing additional func-
tions to compute gas properties. In the case of compressors,
the model determined gas parameters based on the inlet
temperature to each compressor stage. These values were
then used to calculate the component's thermodynamic
performance and the properties of the airflow downstream.

For turbines, the methodology applied was inconsistent.
While the enthalpy drop across the compressor was calcu-
lated using the specific heat evaluated at the mean tempera-
ture consistent with standard engineering practices,
ChatGPT applied varying approaches in the turbine section.

In some cases, gas properties such as specific heat and the
isentropic exponent were determined based on the inlet
temperature (Fig. 6 underscore red line); in other instances,
these properties were evaluated at the average temperature
across the component (Fig. 6 underscore yellow line), and
sometimes they were assessed according outlet temperature
(Fig. 6 underscore green line). Notably, in certain sections
of the engine model, both approaches were used simultane-
ously for different thermodynamic parameters within the
same control volume, leading to internal inconsistencies in
the treatment of gas properties.

% Fuel-Air Ratioc (FAR) with burner efficiency

cp_hot = get_cp_gas(TIT); % Use combustion gas model
LHV = 43e6; % J/kg (Jet fuel lower heating value)
FAR = cp_hot * (TIT - T3) / (eta_b * LHV);

% High-Pressure Turbine (HPT) calculations
cp_cold = get_cp(T3);
h_hpt = cp_cold * (T3 - T25) / eta_mech_hpt;
T45 = TIT - h_hpt / cp_hot;
gamma_hot = get_gamma_gas((TIT + T45) / 2);
P45 = ...

P4 * (1 - (1 -

% Use combustion gas model
(T45/TIT)) / eta_hpt)~(gamma_hot / (gamma_hot - 1));

% Low-Pressure Turbine (LPT) calculations

cp_cold = get_cp((T25 + T82) / 2);

h_lpt = (cp_cold * (T25 - T@2) + (1 + BPR) * cp_cold * (T2 -
/ eta_mech_lpt;

T5 = T45 - h_lpt / cp_hot;

gamma_hot = get_gamma_gas( (145 + T5) / 2);

P5 = ...
Pas * (1 - (1 -

Te2)) ...

% Use combustion gas model

(T5/T45)) / eta_lpt)~(gamma_hot / (gamma_hot - 1));

Fig. 6. Code section implementing semi perfect gas model in the perfor-
mance calculation for the high-pressure and low-pressure turbines

According to literature [4, 7], the recommended meth-
odology for such thermodynamic simulations involves
computing the average specific heat for each component
and then using it to derive other gas properties. ChatGPT’s
implementation deviated from this standard, resulting in
inconsistencies in the application of gas property models
across engine components. It also influenced the calculation
results, which are given in Table 5 after using the model
generated by ChatGPT.

It can be observed that, despite the previously identified
shortcomings in the model formulation, the results deviate
only slightly from the expected values. The thrust is mar-
ginally lower than the value obtained in the earlier model
(see Table 3) and is 1.8% higher than the results of the
“correct model”, but it remains within the range specified
by the manufacturer (see Table 2). The specific fuel con-
sumption increased to a value outside the manufacturer's
specified range, exceeding the maximum limit by nearly
9%. Eliminating the identified modeling deficiencies would
undoubtedly improve these results, which are already rea-
sonably close to the actual values. A discussion with
ChatGPT was conducted to address this issue; however, the
implemented modifications did not yield the desired im-
provements, and further attempts to correct the model were
therefore discontinued in this research.

Table 5. Calculation results for the model generated by ChatGPT with the
semi-perfect gas model

Parameter ChatGPT semi perfect gas model
Takeoff thrust [kN] 102.4
TSFC [g/(kNs)] 11.67
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4. Summary and conclusions

The conducted discussion with ChatGPT 4.0 focused on
the progressive development and refinement of the turbofan
engine performance model, incorporating both thermody-
namic and gas property improvements. Starting from
a simplified configuration, successive enhancements were
introduced to account for non-ideal component efficiencies,
realistic bypass and cooling flow modeling, and the imple-
mentation of a semi-perfect gas model with temperature-
dependent properties.

Throughout the process, ChatGPT was able to generate
computational model and provide explanations aligned with
general engineering practice. However, numerous issues
were encountered, particularly regarding consistent applica-
tion of gas property calculations, correct distribution of
work between turbines and compressors, and the handling
of cooling and bleed flows. In several instances, the chang-
es implemented by ChatGPT did not follow the provided
instructions or introduced new errors, requiring precise
step-by-step guidance and manual corrections.

Despite these challenges, the final model yielded results
that were relatively close to those reported by engine manu-
facturers and validated by other verified simulation models.
Thrust levels fell within the expected range, and specific
fuel consumption, although slightly higher than desired,
remained within an acceptable deviation considering the
model limitations.

It was also observed that ChatGPT performed very reli-
ably when implementing requested modifications into the

numerical engine model. Its ability to translate instructions
into functioning MATLAB code was consistently accurate
and error-free.

In conclusion, while ChatGPT demonstrates a useful ca-
pacity for supporting the development of engine performance
models, its effectiveness is limited by inconsistency in com-
plex thermodynamic logic and a need for iterative correction
when modeling advanced physical processes. This indicates
that the data generated by ChatGPT is still not entirely trust-
worthy. They must be verified by experts, whose intervention
is very often necessary to correct and eliminate errors.

As such, at the current stage of development, close user
supervision and technical validation remain essential when
using LLMs like ChatGPT for engineering design and anal-
ysis tasks. However, it is expected that these tools will
become increasingly capable and reliable in supporting
model development in the near future. Comparative studies
between the performance of ChatGPT 3.5 and 4.0 at work
show a significant improvement in task execution between
these versions [30]; therefore, it is to be expected that the
next version of the program will perform even better in this
respect.

It should also be noted that the quality of user input —
particularly well-structured prompts and precise instruc-
tions — plays a critical role in achieving accurate results.
While the evolution of human—Al collaboration in this area
holds significant potential, it was not the focus of the pre-
sent study.

Nomenclature

BPR bypass ratio

CPR  compressor pressure ratio
F thrust

FAR fuel air ratio

FPR fan pressure ratio

h enthalpy

LLMs Large Language Models
OPR overall pressure ratio

p pressure
SFC  specific fuel consumption
T temperature

TIT  turbine inlet temperature

TSFC takeoff specific fuel consumption
\Y velocity

w work
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