Studies on the dynamics the valve train with machined valve springs
 
More details
Hide details
1
Faculty of Electrical, Electronic, Computer and Control Engineering at Lodz University of Technology
2
Faculty of Mechanical Engineering at Lodz University of Technology
Publication date: 2017-02-01
 
Combustion Engines 2017,168(1), 100–109
 
KEYWORDS
ABSTRACT
An analysis of the literature for currently used solutions of valve trains in internal combustion engines and analytical studies on the dynamics the valve train of the internal combustion engine provided with machined valve springs were carried out. The aim of the study was to compare the dynamic parameters of the two valve trains for the established internal combustion engine: the first one equipped with machined springs and the second one with coil springs. The numerical models for investigated valve trains, using the Finite Element Method and additional mathematical relationships were developed and presented in the article. The article describes the results of the researches and formulated conclusions.
 
REFERENCES (49)
1.
CLENCI, A.C., HARA, V., STANESCU, N-D., BIZILAC, A., NICULESCU, R. Analytical synthesis and computer- aided kinematic analysis of a continuously variable valve lift mechanism. AProc. IMechE Part C: J. Mechanical Engineering Science. 2017, 231(2), 309-325.
 
2.
JOHANSSON, B. Förbränningsmotorer del 2, 2004.
 
3.
KRÜGER, K. Einfluss hydraulischer Nockenwellenversteller auf die Dynamik von Ventil- und Steuertrieben, DI Dissertation, Technischen Universität München, 2009.
 
4.
HEISLER, H. Advanced Engine Technology. SAE International, Warrendale, PA, 1995.
 
5.
GROHN, M. The new camshaft adjustment system by Mercedes Benz – design and application in 4valve engines. SAE Technical Paper 901727, 1990.
 
6.
MORIYA, Y., WATANABE, A., UDA, H., KAWAMURA, H., YOSHIOKA, M. A newly developed intelligent variable valve timing system – continuously controlled cam phasing as applied to a new 3 liter inline 6 engine. SAE Technical Paper 960579, 1996.
 
7.
JÄÄSKELÄINEN, H. Variable valve actuation. 2011, DieselNet. www.dieselnet.com (2012-06-5).
 
8.
STONE, C.R., KWON, E.K.M. Variable valve timing for IC engines. Automotive Engineer. August/September 1985.
 
9.
PARKER, P.H. The variable valve timing mechanism for the Rover K16 engine. Part 2: application to the engine and the performance obtained. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2000, 214(2), 207-216.
 
10.
VON JOHANN-GEORG, U., FIEDLER, O., Vo§ H., Motor fur Porsche 968. Motortechnische Zeitschrift 1991, 52(12).
 
11.
STOFFREGEN, J., Motorradtechnik: Grundlagen und Konzepte von Motor, Antrieb und Fahrwerk Populär. ATZ/MTZ-Fachbuch Springer Vieweg Populär. Kraftfahrzeugtechnik, Springer-Verlag. 2012.
 
12.
Ventiltrieb: Systeme und Komponenten, Mahle GmbH, Springer-Verlag, 2012.
 
13.
INOUE, K., NAGAHIRO, K., AJIKI, Y., KISHI, N. A high power, wide torque range, efficient engine with a newly developed variable valve lift and -timing mechanism. SAE Technical Paper 890675, 1989.
 
14.
LANCEFIELD, T., LAWRENCE, N., AHMED, A., BEN HADI HAMOUDA, H. VLD a flexible, modular, cam operated VVA system giving variable valve lift and duration and controlled secondary valve openings, SIA-IFP (2006).
 
15.
my.ms-motorservice.com/fileadm... Pierburg/Variabler_Ventiltrieb/Bro_Var_Ventiltrieb_EN_web.pdf (available 2017.02.12).
 
16.
YAMAGUCHI, J. Super-economy lean-burn engines from Mitsubishi and Honda – techbriefs. Automotive Engineering. 1991, 11(99).
 
17.
 
18.
 
19.
 
20.
 
21.
 
22.
www.mitsubishi-motors.com/corp... technology/performance/e/mivec.html (available 2017.02.12).
 
23.
 
24.
 
25.
 
26.
 
27.
 
28.
 
29.
MILOVANOVIC, N., DAVE, B., GEDGE, S., TURNER, J. Cam profile switching (CPS) and phasing strategy vs fully variable valve train (FVVT) strategy for transitions between spark ignition and controlled auto ignition modes. SAE Technical Paper. 2005, 2005-01-0766.
 
30.
ZHAO, H. HCCI and CAI engines for the automotive industry. Elsevier. 2007.
 
31.
 
32.
 
33.
 
34.
ThyssenKrupp techforum Juli 2004 (available 2017.02.12).
 
35.
DABROWSKI, A., GLOGOWSKI, M., KUBIAK, P. Improving the efficiency of four-stroke engine with use of the pneumatic energy accumulator – simulations and examinations. International Journal of Automotive Technology. 2016, 17(4), 581-590).
 
36.
BALL, A.D., DOWSON, D., et al. Cam and follower design. In: Tribology Series. 1988, 14, 111-130.
 
37.
NUNNEY, M.J. Light and heavy vehicle technology. Elsevier, 2013, 514.
 
38.
HUBER, R. Dynamics of variable valve trains and extrapolation methods for time-stepping schemes. PhD Thesis, Technischen Universität München, 2012.
 
39.
VAN BASSHUYSEN, R., SCHAFER, F. Internal combustion engine handbook: basics, components, systems, and perspectives. SAE International, 2004.
 
40.
MUHR, T.H. New technologies for engine valve springs. SAE Technical Paper. 1993, 930912.
 
41.
HILLIER, V. Hillier’s fundamentals of motor vehicle technology. Nelson Thornes, 6 edition, 2004.
 
42.
SEMET, W. Entwicklung einer pneumatischen Ventilfeder für hochdrehende Serienmotoren, PhD thesis, Universität Stuttgart, 2007.
 
43.
Pick-a-Part: Selecting valvetrain components for a performance build. Engine Builder, February 2014.
 
44.
SUDHAKAR, K.V., Failure analysis of an automobile valve spring. Engineering Failure Analysis. 2001, 8(6), 513-520.
 
45.
YU, Z-W., XU, X-L. Failure analysis on diesel-engine valve springs. Journal of Failure Analysis and Prevention. 2009, 9(4), 329-334.
 
46.
PATEL SUJAL, V., PAWAR SHRIKANT, G. Failure analysis of exhaust valve spring of C.I. engine. International Journal of Engineering Research & Technology (IJERT). 2013, 2(3).
 
47.
BOEHM, G.L. Wire springs versus machined springs. A comparison, PE – 15 SEP 14 – Version 16, Helical Products Co. MW Industries, Inc. Santa Maria, USA.
 
48.
Machine spring displacer for Stirling cycle machines, Patent US7017344 B2.
 
49.
 
eISSN:2658-1442
ISSN:2300-9896