Comparison of CO₂ emissions and costs of combustion and electric light commercial vehicles
More details
Hide details
1
Wydział Samochodów i Maszyn Roboczych, Politechnika Warszawska, Poland
2
Transport Telematics Centre, Motor Transport Institute, Poland
3
Environment Protection Centre, Motor Transport Institute, Poland
Submission date: 2025-11-30
Final revision date: 2026-02-05
Acceptance date: 2026-02-09
Online publication date: 2026-02-19
KEYWORDS
TOPICS
ABSTRACT
This paper compares CO₂ emissions, energy use, operating costs, and external climate costs of light commercial vehicles (N1-I–N1-III) with spark-ignition, compression-ignition, and battery-electric propulsion, operating under the Polish electricity mix. Fuel and electricity consumption, as well as CO₂ emissions, for ICE vehicles were obtained from the COPERT 5 model, while BEV emissions were calculated using national KOBiZE emission factors. Annual mileage was set at 30,000 km. The results show that BEVs reduce CO₂ emissions by approximately 25–50% and energy costs by 35–55% compared with combustion vehicles, with the most significant benefits in the heaviest N1-III class. External costs of CO₂ are also substantially lower for BEVs. However, the high carbon intensity of the Polish power sector limits achievable reductions, underscoring that fleet electrification must be accompanied by power system decarbonization to fully exploit its climate benefits.
REFERENCES (56)
1.
Adamczyk J, Dzikuć M, Dylewski R, Varese E. Assessment of selected environmental and economic factors for the development of electro-mobility in Poland. Transportation. 2024;51(6):2199-2223.
https://doi.org/10.1007/s11116....
2.
Ankathi S, Gan Y, Lu Z, Littlefield JA, Jing L, Ramadan FO et al. Well‐to‐wheels analysis of greenhouse gas emissions for passenger vehicles in Middle East and North Africa. J Ind Ecol. 2024;28(4):800-812.
https://doi.org/10.1111/jiec.1....
3.
Awan MA, Scorrano M. The cost competitiveness of electric refrigerated light commercial vehicles: a total cost of ownership approach. Future Transp. 2025;5(1):10.
https://doi.org/10.3390/future....
4.
Balaras CA, Dascalaki EG, Patsioti M, Droutsa KG, Kontoyiannidis S, Cholewa T. Carbon and greenhouse gas emissions from electricity consumption in European Union buildings. Buildings. 2023;14(1):71.
https://doi.org/10.3390/buildi....
5.
Burchart-Korol D, Jursova S, Folęga P, Korol J, Pustejovska P, Blaut A. Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. J Clean Prod. 2018;202:476-487.
https://doi.org/10.1016/j.jcle....
6.
Burchart-Korol D, Jursova S, Folęga P, Pustejovska P. Life cycle impact assessment of electric vehicle battery charging in European Union countries. J Clean Prod. 2020;257:120476.
https://doi.org/10.1016/j.jcle....
7.
Chatzipanagi A, Pavlovic J, Ktistakis MA, Komnos D, Fontaras G. Evolution of European light-duty vehicle CO2 emissions based on recent certification datasets. Transp Res D Trans Environ. 2022;107:103287.
https://doi.org/10.1016/j.trd.....
8.
Cifuentes F, González CM, Trejos EM, López LD, Sandoval FJ, Cuellar OA et al. Comparison of top-down and bottom-up road transport emissions through high-resolution air quality modeling in a city of complex orography. Atmosphere. 2021;12(11):1372.
https://doi.org/10.3390/atmos1....
9.
Clairotte M, Suarez-Bertoa R, Zardini AA, Giechaskiel B, Pavlovic J, Valverde V et al. Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles. Environ Sci Eur. 2020;32(1):125.
https://doi.org/10.1186/s12302....
10.
Conti S, Ferrara P, D’Angiolella LS, Lorelli SC, Agazzi G, Fornari C et al. The economic impact of air pollution: a European assessment. Eur J Public Health. 2020;30(Supplement_5):ckaa165.084.
https://doi.org/10.1093/eurpub....
11.
Cuéllar-Álvarez Y, Guevara-Luna MA, Belalcázar-Cerón LC, Clappier A. Well-to-wheels emission inventory for the passenger vehicles of Bogotá, Colombia. Int J Environ Sci Technol. 2023;20(11):12141-12154.
https://doi.org/10.1007/s13762....
12.
Da Costa VBF, Bitencourt L, Dias BH, Soares T, De Andrade JVB, Bonatto BD. Life cycle assessment comparison of electric and internal combustion vehicles: a review on the main challenges and opportunities. Renew Sustain Energy Rev. 2025;208:114988.
https://doi.org/10.1016/j.rser....
13.
Das J. Comparative life cycle GHG emission analysis of conventional and electric vehicles in India. Environ Dev Sustain. 2022;24(11):13294-13333.
https://doi.org/10.1007/s10668....
14.
Das PK, Bhat MY, Sajith S. Life cycle assessment of electric vehicles: a systematic review of literature. Environ Sci Pollut Res. 2023;31(1):73-89.
https://doi.org/10.1007/s11356....
15.
De Santis M, Silvestri L, Forcina A. Promoting electric vehicle demand in Europe: design of innovative electricity consumption simulator and subsidy strategies based on well-to-wheel analysis. Energy Convers Manag. 2022;270:116279.
https://doi.org/10.1016/j.enco....
16.
Dey S, Caulfield B, Ghosh B. Modelling uncertainty of vehicular emissions inventory: a case study of Ireland. J Clean Prod. 2019;213:1115-1126.
https://doi.org/10.1016/j.jcle....
17.
Development of the methodology and estimation of the external costs of air pollution emitted from road transport at national level. 2019.
18.
Farzaneh F, Jung S. Lifecycle carbon footprint comparison between internal combustion engine versus electric transit vehicle: a case study in the U.S. J Clean Prod. 2023;390:136111.
https://doi.org/10.1016/j.jcle....
19.
Folęga P, Burchart D. Study of the greenhouse gas emissions from electric buses powered by renewable energy sources in Poland. Energies. 2025;18(7):1807.
https://doi.org/10.3390/en1807....
20.
Gazda-Grzywacz M, Burchart-Korol D, Smoliński A, Zarębska K. Environmental protection – greenhouse gas emissions from electricity production in Poland. J Phys: Conf Ser. 2019;1398(1):012004.
https://doi.org/10.1088/1742-6....
21.
Golebiewski W, Galdynski D, Osipowicz T, Lisowski M. Comparative assessment of carbon dioxide emissions from internal combustion engines vehicles, plug-in hybrid electric vehicles, battery electric vehicles and fuel cell electric vehicles operated in Poland from 2025–2040 – all types of vehicles M1 category. Transport Problems. 2025;20(2):45-58.
https://doi.org/10.20858/tp.20....
22.
Hasterok D, Castro R, Landrat M, Pikoń K, Doepfert M, Morais H. Polish energy transition 2040: energy mix optimization using Grey Wolf optimizer. Energies. 2021;14(2):501.
https://doi.org/10.3390/en1402....
23.
Hofbauer F, Putz L-M. External costs in inland waterway transport: an analysis of external cost categories and calculation methods. Sustainability. 2020;12(14):5874.
https://doi.org/10.3390/su1214....
24.
Joshi A, Sharma R, Baral B. Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. J Clean Prod. 2022;379:134407.
https://doi.org/10.1016/j.jcle....
25.
Kawsar S, Biswas S, Noor M, Mamun MdS. Investigating the applicability of COPERT 5.5 emission software in Bangladesh and developing countrywide vehicular emission inventories. Environ Sci Atmos. 2024;4(1):57-72.
https://doi.org/10.1039/D3EA00....
26.
Koba R, Lipka P, Kalinowski M, Czaplewski K, Witkowska J, Weintrit A. External transport costs and implications for sustainable transport policy. Sustainability. 2024;16(22):9687.
https://doi.org/10.3390/su1622....
27.
Lal A, Renaldy T, Breuning L, Hamacher T, You F. Electrifying light commercial vehicles for last-mile deliveries: environmental and economic perspectives. J Clean Prod. 2023;416:137933.
https://doi.org/10.1016/j.jcle....
28.
Laskowski PP, Zimakowska-Laskowska M, Zasina D, Wiatrak M. Comparative analysis of the emissions of carbon dioxide and toxic substances emitted by vehicles with ICE compared to the equivalent emissions of BEV. Combustion Engines. 2021;187(4):102-105.
https://doi.org/10.19206/CE-14....
29.
Liu F, Shafique M, Luo X. Dynamic lifecycle emissions of electric and hydrogen fuel cell vehicles in a multi-regional perspective. Environ Impact Assess Rev. 2025;111:107695.
https://doi.org/10.1016/j.eiar....
30.
Lu Y, Liu Q, Li B, Jiang Q, Li Q. Energy mix-driven dynamic life cycle assessment on greenhouse gas emissions of passenger cars in China. J Clean Prod. 2024;466:142817.
https://doi.org/10.1016/j.jcle....
31.
Martinez SS, Samaras C. Electrification of transit buses in the United States reduces greenhouse gas emissions. Environ Sci Technol. 2024;acs.est.2c07296.
https://doi.org/10.1021/acs.es....
32.
Maselli M, Pelegrina J, Marotti De Mello A, Ribeiro Souza JV, Marx R, Priarone PC. Electric or internal combustion vehicles? A life cycle assessment in São Paulo. Renew Sustain Energy Rev. 2025;212:115431.
https://doi.org/10.1016/j.rser....
33.
Mendziņš K, Barisa A. Electric vs. internal combustion vehicles: a multi-regional life cycle assessment comparison for environmental sustainability. Environ Climate Technol. 2024;28(1):20240065.
https://doi.org/10.2478/rtuect....
34.
Middela MS, Mahesh S, Kancharla SR, Ramadurai G, Perme R, Sripada SK et al. Complete LCA of battery electric and conventional fuel vehicles for freight trips. Transp Res D Trans Environ. 2022;110:103398.
https://doi.org/10.1016/j.trd.....
35.
Mofolasayo A. Assessing and managing the direct and indirect emissions from electric and fossil-powered vehicles. Sustainability. 2023;15(2):1138.
https://doi.org/10.3390/su1502....
36.
Mostert M, Limbourg S. External costs as competitiveness factors for freight transport — a state of the art. Transp Rev. 2016;36(6):692-712.
https://doi.org/10.1080/014416....
37.
Orynycz O, Zimakowska-Laskowska M, Kulesza E. CO2 emission and energy consumption estimates in the COPERT model – conclusions from chassis dynamometer tests and SANN artificial neural network models and their meaning for transport management. Energies. 2025;18(13):3457.
https://doi.org/10.3390/en1813....
38.
Pacura W, Szramowiat-Sala K, Gołaś J. Emissions from light-duty vehicles – from statistics to emission regulations and vehicle testing in the European Union. Energies. 2023;17(1):209.
https://doi.org/10.3390/en1701....
39.
Pietrzak K, Pietrzak O. Environmental effects of electromobility in a sustainable urban public transport. Sustainability. 2020;12(3):1052.
https://doi.org/10.3390/su1203....
40.
Poplewski G, Ting M, Foo DCY, Tan RR, Tan YL. Carbon Emission Pinch Analysis for Transformation of Polish power generation sector. Clean Techn Environ Policy. 2025;27(9):4685-4709.
https://doi.org/10.1007/s10098....
41.
Puma-Benavides DS, Cevallos-Carvajal AS, Masaquiza-Yanzapanta AG, Quinga-Morales MI, Moreno-Pallares RR, Usca-Gomez HG et al. Comparative analysis of energy consumption between electric vehicles and combustion engine vehicles in high-altitude urban traffic. World Electr Veh J. 2024;15(8):355.
https://doi.org/10.3390/wevj15....
42.
Raugei M. Update on the life-cycle GHG emissions of passenger vehicles: literature review and harmonization. Energies. 2022;15(19):7163.
https://doi.org/10.3390/en1519....
43.
Shet KHN, Moholkar VS. Comparative assessment of global warming potential of gasoline, battery, and hybrid vehicles in India. Renew Sustain Energy Rev. 2025;207:114951.
https://doi.org/10.1016/j.rser....
44.
Skoczkowski T, Bielecki S, Węglarz A, Włodarczak M, Gutowski P. Impact assessment of climate policy on Poland’s power sector. Mitig Adapt Strateg Glob Change. 2018;23(8):1303-1349.
https://doi.org/10.1007/s11027....
45.
Smit R, Awadallah M, Bagheri S, Surawski NC. Real-world emission factors for SUVs using on-board emission testing and geo-computation. Transp Res D Trans Environ. 2022;107:103286.
https://doi.org/10.1016/j.trd.....
46.
Sobol Ł, Dyjakon A. The influence of power sources for charging the batteries of electric cars on CO2 emissions during daily driving: a case study from Poland. Energies. 2020;13(16):4267.
https://doi.org/10.3390/en1316....
47.
Tang B, Xu Y, Wang M. Life cycle assessment of battery electric and internal combustion engine vehicles considering the impact of electricity generation mix: a case study in China. Atmosphere. 2022;13(2):252.
https://doi.org/10.3390/atmos1....
48.
Tsakalidis A, Krause J, Julea A, Peduzzi E, Pisoni E, Thiel C. Electric light commercial vehicles: are they the sleeping giant of electromobility? Transp Res D Trans Environ. 2020;86:102421.
https://doi.org/10.1016/j.trd.....
49.
Twum-Duah NK, Neves Mosquini LH, Shahid MS, Osonuga S, Wurtz F, Delinchant B. The indirect carbon cost of e-mobility for select countries based on grid energy mix using real-world data. Sustainability. 2024;16(14):5883.
https://doi.org/10.3390/su1614....
50.
Vieira V, Baptista A, Cavadas A, Pinto GF, Monteiro J, Ribeiro L. Comparison of battery electrical vehicles and internal combustion engine vehicles–greenhouse gas emission life cycle assessment. Appl Sci. 2025;15(6):3122.
https://doi.org/10.3390/app150....
51.
Winkler JK, Grahle A, Syré AM, Martins-Turner K, Göhlich D. Fuel cell drive for urban freight transport in comparison to diesel and battery electric drives: a case study of the food retailing industry in Berlin. Eur Transp Res Rev. 2022;14(1):2.
https://doi.org/10.1186/s12544....
52.
Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej na podstawie informacji zawartych w krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2023 rok (in Polish). 2024.
53.
Zaino R, Ahmed V, Alhammadi AM, Alghoush M. Electric vehicle adoption: a comprehensive systematic review of technological, environmental, organizational and policy impacts. World Electr Veh J. 2024;15(8):375.
https://doi.org/10.3390/wevj15....
54.
Zamasz K, Stęchły J, Komorowska A, Kaszyński P. The impact of fleet electrification on carbon emissions: a case study from Poland. Energies. 2021;14(20):6595.
https://doi.org/10.3390/en1420....
55.
Zimakowska-Laskowska M, Laskowski P. Emission from internal combustion engines and battery electric vehicles: case study for Poland. Atmosphere. 2022;13(3):401.
https://doi.org/10.3390/atmos1....
56.
Zimakowska-Laskowska M, Laskowski P. Comparison of pollutant emissions from various types of vehicles. Combustion Engines. 2024;197(2):139-145.
https://doi.org/10.19206/CE-18....