Numerically effective 10 degrees of freedom model in autonomous vehicle motion planning
More details
Hide details
1
Departament of Combustion Engines and Vehicles, Faculty of Mechanical Engineering and Computer ScienceUniversity of Bielsko-Biała, Poland
Submission date: 2025-06-02
Final revision date: 2025-07-17
Acceptance date: 2025-07-22
Online publication date: 2025-09-15
Corresponding author
Michał Brzozowski
Departament od combustion engines and vehicles, University of Bielsko-Biała, Willowa 2, 43-309, Bielsko-Biala, Poland
KEYWORDS
TOPICS
ABSTRACT
Simplified vehicle models dominate the literature on autonomous driving, with the 3 degrees of freedom
(3 DoF) model being the most frequently used due to its high computational efficiency. However, such models have significant limitations, particularly in their inability to account for detailed tire–road interactions.
This study proposes an extended model with ten degrees of freedom (10 DoF), developed using the Newton–Euler formalism. Analytical derivation of the mass matrix and the vector of right-hand sides enables significant reduction in computation time by eliminating matrix operations. For comparison, another 10 DoF model based on the homogeneous and joint coordinate transformation method is also considered. The aim is to assess how the choice of modeling formalism affects both computational efficiency and the fidelity of real-world motion representation.
All three models (3 DoF and both 10 DoF variants) were tested in simulations of an overtaking maneuver under varying weather conditions. The analysis focused on differences in steering angle trajectories and tracking errors. Additional evaluations included a lane-change maneuver and a 736-meter driving scenario.
Results show that extended models provide improved accuracy and better capture of dynamic vehicle behavior. In particular, the Newton–Euler-based 10 DoF model offers significant computational advantages. The maximum observed difference in steering angle between models reached 2 degrees, attributed to the 3 DoF model’s simplified treatment of tire forces and lack of friction coefficient consideration. The proposed models show strong potential for implementation in motion planning for autonomous vehicles.
REFERENCES (28)
1.
Ajanović Z, Regolin E, Shyrokau B, Ćatić H, Horn M, Ferrara A. Search-based task and motion planning for hybrid systems: agile autonomous vehicles. Eng Appl Artif Intel. 2023;121:105893.
https://doi.org/10.1016/j.enga....
2.
Atoui H, Sename O, Alcala E, Puig V. Parameter varying approach for a combined (kinematic + dynamic) model of autonomous vehicles. IFAC-PapersOnLine. 2020;53(2):15071-150716.
https://doi.org/10.1016/j.ifac....
3.
Brown M, Funke J, Erlien S, Gerdes JC. Safe driving envelopes for path tracking in autonomous vehicles. Control Eng Pract. 2017;61:307-316.
https://doi.org/10.1016/j.cone....
4.
Brzozowski M. Planowanie ruchu samochodu autonomicznego z zastosowaniem modeli dynamiki (dissertation in Polish). University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science. Bielsko-Biala 2025.
5.
Brzozowski M, Drąg Ł. Application of dynamic optimization for autonomous vehicle motion control. Transport Problems. 2023;18(2):209-222.
https://doi.org/10.20858/tp.20....
6.
Chebly A, Talj R, Charara A. Coupled longitudinal/lateral controllers for autonomous vehicles navigation, with experimental validation. Control Eng Pract. 2019;88:79-96.
https://doi.org/10.1016/j.cone....
7.
Dallas J, Jain K, Dong Z, Sapronov L, Cole M, Jayakumar P et al. Online terrain estimation for autonomous vehicles on deformable terrains. J Terramechanics. 2020;91:11-22.
https://doi.org/10.1016/j.jter....
9.
Gillespie TD. Fundamentals of vehicle dynamics. SAE International. Warrendale 1992.
10.
Grzegożek W, Adamiec-Wójcik I, Wojciech S. Komputerowe modelowanie dynamiki pojazdów samochodowych (in Polish). Cracow University of Technology. Cracow 2003.
11.
Guo H, Cao D, Chen H, Sun Z, Hu Y. Model predictive path following control for autonomous cars considering a measurable disturbance: implementation, testing, and verification. Mech Syst Signal Pr. 2019;118:41-60.
https://doi.org/10.1016/j.ymss....
12.
Hu C, Qin Y, Cao H, Song X, Jiang K, Rath J et al. Lane keeping of autonomous vehicles based on differential steering with adaptive multivariable super-twisting control. Mech Syst Signal Pr. 2019;125:330-346.
https://doi.org/10.1016/j.ymss....
13.
Joševski M, Katriniok A, Riek A, Abel D. Disturbance estimation for longitudinal vehicle dynamics control at low speeds. IFAC-PapersOnLine. 2017;50(1):987-993.
https://doi.org/10.1016/j.ifac....
14.
Li X, Sun Z, Cao D, Liu D, He H. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mech Syst Signal Pr. 2017;87:118-137.
https://doi.org/10.1016/j.ymss....
15.
Lozia Z. Examples of authorial models for simulation of motor vehicle motion and dynamics. Zeszyty Naukowe Instytutu Pojazdów Politechniki Warszawskiej. 2015;104:9-27.
16.
Lozia Z. Model symulacyjny ruchu i dynamiki samochodu dwuosiowego, wykorzystywany w symulatorze (in Polish). Zeszyty Naukowe Instytutu Pojazdów PW. 1999;4(34):37-51.
17.
Lozia Z. Symulatory jazdy samochodem (in Polish). Wydawnictwo Komunikacji i Łączności. Warszawa 2008.
18.
Pacejka HB, Sharp RS. Shear force development by pneumatic tyres in steady state conditions, a review of modeling aspects. Veh Syst Dyn. 1991;20(3-4):121-175.
https://doi.org/10.1080/004231....
19.
Paden B, Čáp M, Yong SZ, Yershov D, Frazzoli E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans Intell Veh. 2016;1(1):33-55.
https://doi.org/10.1109/TIV.20....
20.
Pielecha J, Kurtyka K, Skobiej K. The impact of vehicle dynamic parameters on the exhaust emissions in RDE tests. Combustion Engines. 2018;175(4):26-34.
https://doi.org/10.19206/CE-20....
21.
Polack P, Altché F, Novel B, de La Fortelle A. The kinematic bicycle model: a consistent model for planning feasible trajectories for autonomous vehicles? 2017 IEEE Intelligent Vehicles Symposium. 2017:812-818.
https://doi.org/10.1109/IVS.20....
22.
Polack P. Consistency and stability of hierarchical planning and control systems for autonomous driving. Paris: Université Paris Sciences et Lettres; 2018. Available from:
https://hal.science/tel-020967....
24.
Ribeiro AM, Koyama MF, Moutinho A, de Paiva EC, Fioravanti AR. A comprehensive experimental validation of a scaled car-like vehicle: lateral dynamics identification, stability analysis, and control application. Control Eng Pract. 2021;116:104924.
https://doi.org/10.1016/j.cone....
25.
Vial P, Puig V. Kinematic/dynamic SLAM for autonomous vehicles using the linear parameter varying approach. Sensors. 2022;22(21):8211.
https://doi.org/10.3390/s22218....
26.
Wróbel RS, Sroka Z, Sierzputowski G, Dimitrov R, Mihaylov V, Ivanov D. Driving protocols: the possibility of using routing protocols in autonomous transport. Combustion Engines. 2024;196(1):3-9.
https://doi.org/10.19206/CE-17....
27.
Zhang F, Gonzales J, Li SE, Borrelli F, Li K. Drift control for cornering maneuver of autonomous vehicles. Mechatronics. 2018;54:167-174.
https://doi.org/10.1016/j.mech....
28.
Zhou S, Wang Y, Zheng M, Tomizuka M. A hierarchical planning and control framework for structured highway driving. IFAC-PapersOnLine. 2017;50(1):9101-9107.
https://doi.org/10.1016/j.ifac....