Operational properties of performance engine intake air cleaners
 
More details
Hide details
1
Faculty of Mechanics Military University of Technology, Warsaw, Poland.
Publication date: 2018-02-01
 
Combustion Engines 2018,172(1), 25–34
 
KEYWORDS
ABSTRACT
The paper presents an analysis of the design of air cleaners in performance vehicles. The paper confirms that their fundamental property is a much lower flow resistance compared to standard air cleaners. The consequences of replacing a standard air filter element with a performance one have been described. The impact of this modification i.e. an increase (decrease) in the engine torque and power output has been shown. A need to perform tests related to the filtration properties of performance air cleaners has been indicated. A methodology of laboratory research has been developed for performance vehicle air cleaners. The results of the research on the filtration efficiency and accuracy characteristics have been presented along with the flow resistance of air filter elements/air cleaners depending on the dust absorbance coefficient km. The accuracy of the filter element has been evaluated following a Pamas particle counter measurement.
 
REFERENCES (34)
1.
BACZEWSKI, K., HEBDA, M. Filtracja płynów eksploatacyjnych (Filtration of operating fluids). MCNEMT. Radom 1992.
 
2.
BUCHER, T.M., TAFRESHI, H.V., TEPPER, G.C., Modeling performance of thinfibrous coatings with orthogonally layered nanofibers for improved aerosol filtration. Powder Technology. 2013, 249, 43-53.
 
3.
CHŁOPEK Z. Testing of hazards to the environment caused by particulate matter during use of vehicles. Eksploatacja i Niezawodność – Maintenance and Reliability. 2012, 2, 160-170.
 
4.
Diesel Engine Air Filtration. PALL Corporation. 2004.
 
5.
DURST, M., KLEIN, G., MOSER, N. Filtration in Fahrzeugen. Die Bibliothek der Technik, Niemcy 2005.
 
6.
DZIUBAK, T. Operating fluids contaminantions and their effect on the wear of elements of a motor vehicle’s combustion engine. The Archives of Automotive Engineering – Archiwum motoryzacji. 2016, 72(2), 43-72.
 
7.
DZIUBAK, T., SZWEDKOWICZ, S. Experimental research on filtering fibers in a cyclone–porous barrier system. Combustion Engines. 2014, 158(3), 45-55.
 
8.
DZIUBAK, T. The assessment of the possibilities of improvement of the extraction evenness in multicyclone dedusters fitted in special vehicles. Combustion Engines. 2012, 4, 34-42.
 
9.
DZIUBAK, T. Methodology of research of filter paper characteristics to air filter of vehicle exploited at large air dustiness conditions. ZEM PAN. 2003, 4(136), 101-117.
 
10.
ERDMANNSDÖRFER, H. Lesttingmoglichkeiten von Papierfiltern zur Reinigung der Ansaugluft von Diselmotoren. MTZ. 1971, 32(4), 123-131.
 
11.
FITCH, J. Clean oil reduces engine fuel consumption. Practicing Oil Analysis Magazine. 2002, 11-12.
 
12.
MULLER, T.K., MEYER, J., THEBAULT, E. et al. Dust capacity increase of air filters by oil pre-treatment. Aerosol Technology. 2014.
 
13.
GRAFE, T., GOGINS, M., BARRIS, M. et al. Nanofibers in filtration applications in transportation. Filtration 2001 International Conference and Exposition. Chicago, Illinois, December 3-5, 2001.
 
14.
GT. Tuning, car audio, samochody sportowe. 2002, 3.
 
15.
GT. Tuning, car audio, samochody sportowe. 2002, 45.
 
16.
HEIKKILÄ, P., SIPILÄ, A., PELTOLA, M. et al. Electrospun PA-66 Coating on Textile Surfaces. Textile Research Journal. 2007, 77(11), 864-870.
 
17.
JAROSZCZYK, T., FALLON, S.L., DORGAN, J.E. et al. Development of high dust capacity multi-media engine air filters. Fluid/Particle Separation Journal. 2003, 15(2), 57-65.
 
18.
JAROSZCZYK, T., FALLON, S.L., PARDUE, B.A. Analysis of engine air cleaner efficiency for different size dust distributions. Fluid/Particle Separation Journal. 2002, 14(2), 75-88.
 
19.
JAROSZCZYK, T., PARDUE, B.A., HECKEL, S.P. et al. Engine air cleaner filtration performance – theoretical and experimental background of testing. AFS Fourteenth Annual Technical Conference and Exposition, May 1, 2001, Tampa, Florida Included in the Conference Proceedings (Session 16).
 
20.
KOSZAŁKA, G., SUCHECKI, A. Changes in performance and wear of small diesel engine during durability test. Combustion Engines. 2015, 3, 34-40.
 
21.
PN-ISO 5011. Filtry powietrza do silników spalinowych i sprężarek. Badanie działania. PKNM, 1994.
 
22.
PN-S-34040, Filtry powietrza. Wymagania i badania. PKN, 1996.
 
23.
SCHULZE, M., TAUFKIRCH, G. Papierluftfilter Nutzfahrzeugen. MTZ. 1991, 52(12).
 
24.
TAUFKIRCH, G., MAYR, G. Papierluftfilter für Motoren in Nutzfahrzeugen. MTZ. 1984, 45(3), 95-105.
 
25.
MYSŁOWSKI, J. Doładowanie silników. WKiŁ, Warszawa 2011.
 
26.
TRUHAN, J. Filter performance as the engine sees it. Filtration & Separation. 1997, 34(12), 1019-1022.
 
27.
WANG, Q., BAI, Y., XIE, J. et al. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM 2.5 particles. Powder Technology. 2016, 292, 54-63.
 
28.
 
29.
K&N Engineering, www.KNfilters.com.
 
eISSN:2658-1442
ISSN:2300-9896