Piston assembly in the most powerful 2.0l diesel engine – case study of the current tribological system and innovative concepts for the future
More details
Hide details
Publication date: 2017-11-01
Combustion Engines 2017,171(4), 127–133
This article is a contribution to the ongoing debate on the scenario of the vehicle powertrains development. The directions of the internal combustion engines development in search of the possibility of effective economic and ecological indicators improvement have been indicated. It has been pointed out that this goal can be achieved through the use of nanotechnology in order to exceed the downsizing barriers resulting from the permissible mechanical loads for conventional materials. The article presents the study of the construction and materials used in the piston assembly of the most advanced four-cylinder, compression-ignition diesel engine currently in manufacture. Original concepts of nanotechnology have been proposed to reduce friction losses in major friction components of future engines with extremely high loads. The main idea is to verify the hypothesis that the sub-micron surface texture of the friction components obtained in the process of applying anti-wear outer layers can lead to an effective reduction of friction losses under real engine operating conditions. Computer simulations of the effects of introducing the surface texture in the upper sealing ring on friction loss confirm this hypothesis by showing friction value being reduced by 3-4% relative to the standard ring profile. In the summary, further advanced technologies designed to effectively utilize the unique properties of carbon nanotubes have been described.