The phosphate content of a test sample is one of the indicators of the trophic status of the test water. In this work, an attempt was made to use a non-destructive ultrasonic technique to determine this parameter. For this purpose, a specially prepared measuring station was used, on which distilled water samples with different phosphate contents were tested. Specially prepared samples contained 0, 20, 40, 60, 80 and 100 kg/m3 of phosphates. In addition, tests were carried out on the effect of sample temperature on the values of the characteristic parameter of the wave, in the range from 12 to 30 oC. All tests were carried out using two ultrasonic heads with a wave frequency of 2 MHz. The ultrasonic wave parameter analysed in the study was the propagation speed of the ultrasonic wave. The results obtained indicate that the ultrasonic method is useful for non-destructive evaluation of phosphate content in the sample. Additionally, they show a large influence of the sample temperature on the results read.
Ainslie MA, Laws RM, Sertlek HÖ. International airgun modeling workshop: validation of source signature and sound propagation models. Dublin, July 16, 2016. Problem Description. IEEE J Oceanic Eng. 2019;44(3):565-574.
Annalakshmi G, Murugan SS. Analyzing the physical and chemical properties of water column nutrients and sediments along southeast coast of India. Fourth International Confer-ence in Ocean Engineering (ICOE2018). 2019;22:985-996.
Azmi NHBM. Bio-optical properties and seasonal variability of phytoplankton size classes in Peninsular Malaysia. Doctoral Thesis. Universiti Malaysia Terengganu. 2019.
Ceccorulli G. Pizzoli M. Effect of water on the relaxation spectrum of poly (methylmethacrylate). Polym Bull. 2001;47(3-4):283-289.
Cody R. Acoustic monitoring for leaks in water distribution networks. 2020.
Davis CM, Jarzynski J. Liquid water – acoustic properties: absorption and relaxation. The Physics and Physical Chemis-try of Water. 1972;1:443-461.
De Francesco A, Scaccia L, Formisano F, Maccarini M, De Luca F, Parmentier A et al. Shaping the terahertz sound prop-agation in water under highly directional confinement. Phys Rev B. 2020;101(5):054306.
Dera J. Fizyka morza (in Polish). PWN Warszawa. 2003.
Dera J. Marine physics. Elsevier. 1992.
Desjonquères C, Gifford T, Linke S. Passive acoustic moni-toring as a potential tool to survey animal and ecosystem pro-cesses in freshwater environments. Freshwater Biol. 2020;65(1):7-19.
Fine RA, Wang DP, Millero FJ. The equation of state of water and seawater as determined from sound velocity data. J Acoust Soc Am. 1973;53(1):365-365.
Francois RE, Garrison GR. Sound absorption based on ocean measurements: Part I: pure water and magnesium sulfate con-tributions. J Acoust Soc Am. 1982;72(3):896-907.
Geay T, Michel L, Zanker S, Rigby JR. Acoustic wave propagation in rivers: an experimental study. Earth Surf Dynam. 2019;7(2):537-548.
Geraldes P, Barbosa J, Martins A, Dias A, Magalhães C, Ramos S et al. In situ real-time zooplankton detection and classification. Oceans 2019-Marseille IEEE. 2019;1-6.
Greenwood HJ. The compressibility of gaseous mixtures of carbon dioxide and water between 0 and 500 bars pressure and 450 and 800 centigrade. Amer. J. Sci. 1969;267:191-208.
Grochowska J, Augustyniak R, Łopata M, Tandyrak R. Is it possible to restore a heavily polluted urban lake? Appl Sci. 2020;10(11):3698.
Hamilton EL. Sediment sound velocity measurements made in situ from bathyscaph Trieste. J Geophys Res. 1963;68(21):5991-5998.
Hermanowicz W, Dożańska W, Dojlido J, Koziorowski B, Zerbe J. Physical and chemical analysis of water and sewage. Arkady, Warsaw 1999.
Hodges RP. Underwater acoustics: analysis, design and performance of sonar. John Wiley & Sons. 2011.
Kajak Z. Hydrobiologia-limnologia. Ekosystemy wód śródlą-dowych (in Polish). PWN, Warszawa. 2001.
Koszela J, Koszela-Marek E, Sysak Z. Weryfikacja zmian ściśliwości wody i roztworu soli NaCl pod wpływem wyso-kich ciśnień (in Polish). Górnictwo i Geoinżynieria. 2008;2:205-211.
Koszela-Marek E. Charakterystyka zmian ściśliwości roztwo-rów soli NaCl pod wpływem wysokich ciśnień hydrostatycz-nych (in Polish). Górnictwo i Geoinżynieria. 2009;1:361-367.
Kozak M, Siejka P. Soot contamination of engine oil – the case of a small turbocharged spark-ignition engine. Combus-tion Engines. 2020;182(3):28-32.
Küsel ET, Siderius M. Comparison of propagation models for the characterization of sound pressure fields. IEEE J Oceanic Eng. 2019;44(3):598-610.
Leroy CC, Mellen RH, Waton G. Absorption of sound in fresh and sea water. Handbook of Elastic Properties of Solids, Liquids, and Gases. 2001;83-115.
Li C. An efficient multi-layer boundary element method for direct computation of sound propagation in shallow water en-vironments. Doctoral Thesis. Massachusetts Institute of Tech-nology. 2019.
Li C, Campbell BK, Liu Y, Yue DK. A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments. J Comput Phys. 2019;392:694-712.
Lunkov AA. Reverberation of wideband signals in shallow water when using sound focusing. Acoust Phys+. 2018;64(3):347-355.
Mackenzie KV. Formulas for the computation of sound speed in sea water. J Acoust Soc Am. 1960;32(1):100-104.
Mellen RH, Simmons VP, Browning DG. Low‐frequency sound absorption in sea water: a borate‐complex relaxation. J Acoust Soc Am. 1980; 67(1):341-342.
Murali K, Sriram V, Samad A, Saha N. Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). 2018;1&2.
Oku T, Hirahara H, Akimoto T. Visualization of deformation and sound emission from bubble in water using VOF method. 18th International Symposium on Flow Visualization, ETH Zurich 2018.
Opaliński P. Wpływ stratyfikacji termicznej i zasolenia na prędkość rozchodzenia się fali akustycznej w wodzie oraz jej wpływ na wynik pomiarów batymetrycznych. Dokonania na-ukowe doktorantów: nauki inżynieryjne (in Polish). Kraków: Creativetime, 2013;151-158.
Pitzer KS, Lippmann DZ, Curl Jr RF, Huggins CM, Petersen DE. The volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of va-porization. J Am Chem Soc. 1955;77(13):3433-3440.
Proulx R, Waldinger J, Koper N. Anthropogenic landscape changes and their impacts on terrestrial and freshwater sound-scapes. Current Landscape Ecology Reports. 2019;4(3):41-50.
Putland RL, Mensinger AF. Exploring the soundscape of small freshwater lakes. Ecol Inform. 2020;55:101018.
Rountree RA, Juanes F, Bolgan M. Temperate freshwater soundscapes: A cacophony of undescribed biological sounds now threatened by anthropogenic noise. Plos One. 2020;15(3):0221842.
Shagapov VS, Galimzyanov MN, Vdovenko II, Khabeev NS. Characteristic features of sound propagation in a warm bubble-laden water. Journal of Engineering Physics and Thermophysics. 2018;91(4):854-863.
Skonieczna D, Szczyglak P, Lemecha M. Modelling lubricat-ing oil wear using fuzzy logic. Combustion Engines. 2024.
Wilson WD. Ultrasonic measurement of the velocity of sound in distilled and sea water. US Naval Ordnance Laboratory. 1960;6746.
Journals System - logo
Scroll to top