Signal filtering method of the fast-varying diesel exhaust gas temperature
 
More details
Hide details
1
Faculty of Ocean Engineering & Ship Technology, Gdansk University of Technology.
Publication date: 2018-11-01
 
Combustion Engines 2018,175(4), 48–52
 
KEYWORDS
ABSTRACT
The paper presents the problem of the impact of external distortions originating on laboratory test stands on the results of measurements of fast-varying diesel exhaust gas temperature. It has been stressed how significant the aspect of the test stand adaptation is during an experiment to ensure the smallest possible impact. This paper, however, focuses on the methods of mathematical processing of a signal recorded during experimental research of a real object. The most significant parameter requiring filtering is the fast-varying exhaust gas temperature in the engine exhaust channel. Methods of mathematical processing adequate to this type of distorted signal have been presented, particularly those that can be used in the Matlab environment and consisting in averaging of the obtained curves of temperature changes. The results of the application of these methods have also been presented on actual curves recorded during laboratory tests and their evaluation has been made.
 
REFERENCES (19)
1.
BROWN, C., KEE, R.J., IRWIN, G.W. et al. Identification applied to dual sensor transient temperature measurement. UKACC Int Control Conference. Manchester 2008.
 
2.
GANDER, W., HREBICEK, J., Solving problems in scientific computing using Maple and Matlab. Springer. Berlin 2004.
 
3.
GORRY, P.A. General least – squares smoothing and differentiation by the convolution (Savitzky-Golay) method. nalytical Chemistry. 1990, 62(6), 570-573.
 
4.
JAREMKIEWICZ, M. Odwrotne zagadnienia wymiany ciepła, występujące w pomiarach nieustalonej temperatury płynów. Rozprawa doktorska. Wydawnictwo Politechniki Krakowskiej, Kraków 2011.
 
5.
JAREMKIEWICZ, M., TALER, J., Inverse determination of transient fluid temperature in pipelines. Journal of Power Technologies. 2016, 96(6), 385-389.
 
6.
KORCZEWSKI, Z. Exhaust gas temperature measurements in diagnostics of turbocharged marine internal combustion engines. Part I. Standard Measurements. Polish Maritime Research.2015, 22/1(85), 47-54.
 
7.
KORCZEWSKI, Z. Exhaust gas temperature measurements in diagnostics of turbocharged marine internal combustion engines. Part II. Dynamic Measurements. Polish Maritime Research. 23/1(89), 68-76.
 
8.
KORCZEWSKI, Z., Diagnostyka eksploatacyjna okrętowych silników spalinowych – tłokowych i turbinowych. Wybrane zagadnienia. Wydawnictwo Politechniki Gdańskiej. Gdańsk 2017.
 
9.
KORCZEWSKI, Z. The method of energy-efficiency investigations of the newly produced marine fuels through the application of a diesel engine. Materiały Konferencji MAPE, Explo-Ship 2018. Zawiercie.
 
10.
KORCZEWSKI, Z., PUZDROWSKA, P. Analytical methodof determining dynamic properties of thermocouples used in measurements of quick – changing temperatures of exhaust gases in marine diesel engines. Combustion Engines. 2015, 162(3), 300-306.
 
11.
KORCZEWSKI, Z., ZACHAREWICZ, M. Alternative diagnostic method applied on marine diesel engines having limited monitoring susceptibility. Transactions of the Institute of Measurement and Control. 2012, 34(8), 937-946.
 
12.
KORCZEWSKI, Z., ZACHAREWICZ, M. Diagnostyka symulacyjna układu turbodoładowania okrętowego tłokowego silnika spalinowego. Zeszyty naukowe Akademii Marynarki Wojennej. 2007, 2(169).
 
13.
LUO, J., YING, K., BAI, J. Savitzky-Golay smoothing and differention filter for even number data. Signal Processing. 2005, 85(7), 1429-1434.
 
14.
MARSZAŁKOWSKI, K., PUZDROWSKA, P. A laboratory stand for the analysis of dynamic properties of thermocouples. Journal of Polish CIMEEAC. 2015, 10(1), 111-120.
 
15.
OLCZYK, A. Koncepcja pomiaru szybkozmiennej temperatury gazu z uwzględnieniem dynamicznej składowej temperatury. Pomiary Automatyka Kontrola. 2007, 53 Bis/9, 576-579.
 
16.
PRATAP, R. Matlab dla naukowców i inżynierów. Państwowe Wydawnictwo Naukowe. Warszawa 2015.
 
17.
PUZDROWSKA, P. Determining the time constant using two methods and defining the thermocouple response to sine excitation of gas temperature. Journal of Polish CIMEEAC. 2016, 11(1), 157-167.
 
18.
SAVITZKY, A., GOLAY, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. Illinois 1964.
 
19.
ZACHAREWICZ, M. Metoda diagnozowania przestrzeni roboczych silnika okrętowego na podstawie parametrów procesów gazodynamicznych w kanale zasilającym turbosprężarkę. Rozprawa doktorska. AMW, Gdynia 2009.
 
eISSN:2658-1442
ISSN:2300-9896