The effect of alternative fuels injection timing on toxic substances formation in CI engines
 
More details
Hide details
1
Faculty of Automotive and Construction Machinery Engineering at Warsaw University of Technology
Publication date: 2017-02-01
 
Combustion Engines 2017,168(1), 73–76
 
KEYWORDS
ABSTRACT
The present study describes selected issues associated with the emission level in toxic exhaust gases and fuel injection timing. The study was focused on the following types of fuels: Diesel oil (the base fuel) and the other fuels were the mixture of fatty acid methyl ester with Camelina (L10 – diesel fuel with 10% V/V FAME of Camelina and L20 – diesel fuel with 10% V/V FAME of Camelina) was used. Fuel injection advanced angle was set for three different values – the factory setting – 12° before TDC, later injection – 7° and earlier injection – 17°. The most important conclusion is that in most measurement points registered in the same engine operating conditions, the concentration of fuel NOx in L10 and L20 increased but PM emissions decreased which is caused by active oxygen located in the internal structure of the fuel. This fact contributes to the rise in temperature during the combustion process. At the same time factory settings of the angle makes NOx emissions lower and close to reference fuel.
 
REFERENCES (15)
1.
AGARWAL, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science. 2007, 33, 233-71.
 
2.
AMBROZIK, A., AMBROZIK, T., ŁAGOWSKI, P. Fuel impact on emissions of harmful components of the exhaust gas from the ci engine during cold start-up. Eksploatacja i Niezawodność – Maintenance and Reliability. 2015, 17(1), 95-99.
 
3.
AMBROZIK, A., ŁAGOWSKI, P. Podstawy sterowania i diagnostyki silników o zapłonie samoczynnym, Wydawnictwo Politechniki Świętokrzyskiej, 2016. Kielce.
 
4.
Instructions for Perkins 1100 Series. (IFP).
 
5.
KRUCZYŃSKI, S.W. Filtracja cząstek stałych w spalinach pojazdów samochodowych, Instytut Naukowo-Wydawniczy SPATIUM, 2011, Radom.
 
6.
KRUCZYŃSKI, S.W. Performance and emission of CI engine fuelled with camelina sativa oil. Energy Conversion and Management. 2013, 65, 1-6.
 
7.
KRUCZYŃSKI, S.W., ORLIŃSKI, P. Combustion of methyl esters of various origins in the agricultural engine. Indian Journal of Engineering and Materials Sciences. 2013, 20, 483-491.
 
8.
MOSER, B.R. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending. Renewable Energy. 2016, 85, 819-825.
 
9.
ORLIŃSKI, P, WOJS, M. K., MAZURUK, P. Budowa stanowiska do badań paliw eksperymentalnych płynnych wykorzystującego silnik rolniczy o zapłonie samoczynnym. Zeszyty Naukowe Instytutu Pojazdów. 2013, 1(92), 167-172.
 
10.
ORLIŃSKI, P. Wybrane zagadnienia procesu spalania paliw pochodzenia roślinnego w silniku o zapłonie samoczynnym, Instytut Naukowo-Wydawniczy SPATIUM, 2013, Radom.
 
11.
ORLIŃSKI, P. Ocena wpływu zmiany kąta wyprzedzenia wtrysku na proces wydzielania ciepła w silniku rolniczym zasilanym biopaliwami. Logistyka. 2014, 3, 4843-4854.
 
12.
PRZYBYŁA, P. Studium stosowania biopaliw gazowych do zasilania silników spalinowych, Wydawnictwo Politechniki Śląskiej. 2015, Gliwice.
 
13.
RAKOPOULOS, C.D., ANTONOPOULS, K.A., RAKOPOULOS, D.C., HOUNTALAS, D.T., GIAKOURNIS, E.G. Comparative Performance and emission study of DI diesel engine with vegetable oil. Energy Conversion and Management. 2006, 47, 3272-87.
 
14.
REHMAN, H., PHADATARE, A.G. Diesel Engine emission and performance from blends of karanja methyl ester and Diesel. Biomass and Bioenergy. 2004, 27, 393-297.
 
15.
REIF, K. Gasoline engine management: systems and components. Springer Fachmedien. 2015, Wiesbaden.
 
eISSN:2658-1442
ISSN:2300-9896