The objects of the study were theoretical cycles of the load control systems and charge exchange process in the naturally aspirated SI engine, including: classic, quantitative throttling control (Seiliger-Sabathe open cycle); system with late inlet valve closing LIVC (the Atkinson-Miller open cycle); system with early inlet valve closing EIVC; system with early exhaust valve closing EEVC, enabling internal exhaust gas recirculation; system of fully independent valve control FIVC. The aim of using camless independent valve control algorithms is to eliminate the throttle as an control valve for load and filling control of the SI engine, while retaining quantitative load control. The aim of the research is to select the camless valve control algorithm most beneficial in terms of energy (the highest effective efficiency) and economy (the lowest fuel consumption).
Benedikt K, Drexler G, Eder T, Eisenkoeldl M, Luttermann C, Schleusener M. Further development of BMW’s fully-variable valve control system valvetronic. MTZ Worldw. 2005;66:10-13.
Bernard L, Ferrari A, Micelli D, Perotto A, Rinolfi R, Vattaneo F. Electro-hydraulic valve control with multiair technology. MTZ Worldw. 2009;70:4-10.
Chang SC. Stability analysis, routes to chaos, and quenching chaos in electromechanical valve actuators. Math Comput Simul. 2020;177:140-151.
Dimitrova D, Tari M, Lanusse P, Aioun F, Moreau X. Robust control for an electromagnetic actuator for a camless engine. Mechatronics. 2019;57:109-128.
Flierl R, Gollasch D, Knecht A. Hannibal W. Improvements to a four-cylinder gasoline engine through the fully variable valve lift and timing system UniValve. SAE Technical Paper 2006-01-0223. 2006.
Fujita T, Onogawa K, Kiga S, Mae Y, Akasaka Y, Tomogane K. Development of innovative variable valve event and lift (VVEL) system. SAE Technical Paper 2008-01-1349. 2008.
Haas M. UniAir – the first fully variable, electrohydraulic valve control system. 9th Schaeffler Symposium Book. 2010.
Haas M, Rauch M. Electrohydraulic fully variable valve train system. MTZ Worldw. 2010;71:16-21.
Jiayu L, Chang S. Precise motion control of an electromagnetic valve actuator with adaptive robust compensation of combustion force. J Frankl Inst. 2019;356(4).
Kopczyński M, Mańczak J, Przewoźny W. Evolution of two-stroke marine diesel engines design in H. Cegielski-Poznan S.A. production. Combustion Engines. 2006;126(3):3-37.
Mańczak J, Łukomski A. Silniki okrętowe z Cegielskiego. Projektowanie i Konstrukcje Inżynierskie. 2019;7-8:26-31.
Mianzo L, Newton S, Popovic Z. Integrated control and power electronics for an electromechanical valve actuation system. Proceedings of the IEEE/ASME. 2005:485-491.
Möller AA. Implementing a Freevalve valve train in an automotive application. 8. VDI-Fachtagung “Ventiltrieb und Zylinderkopf 2019 – im Kontext von Euro VII und E-Mobilität”.
Racewicz S, Olejnik A. Control of Fiat Multiair valve-lift system using ATmega microcontroller. Journal of KONES Powertrain and Transport. 2017;24(3):229-236.
Reinholz BA, Reinholz L, Seethaler RJ. Optimal trajectory operation of a cogging torque assisted motor driven valve actuator for internal combustion engines. Mechatronics. 2018;51:1-7.
Siczek KJ. Future valve train systems. Chapter 10. Tribological Processes in the Valve Train Systems with Lightweight Valves. New Research and Modelling. 2016:205-219.
Yang X, Liang K. Measurement and modelling of a linear electromagnetic actuator driven camless valve train for spark ignition IC engines under full load condition. Mechatronics. 2021;77:102604.
Zheng L, Zhu G. Review of advancement in variable valve actuation of internal combustion engines. Appl Sci. 2020;10.4:1216.
Żmudka Z, Postrzednik S, Przybyła G. Throttleless control of SI engine load by fully flexible inlet valve actuation system. Combustion Engines. 2016;164(1):44-48.
Żmudka Z, Postrzednik S. Improving the effective efficiency of a spark ignition engine through the use of a fully independent valve control system. Combustion Engines. 2021;187(4):30-35.
Journals System - logo
Scroll to top