Figure from article: The use of hydrogen to...
 
KEYWORDS
TOPICS
ABSTRACT
Hydrogen is applied to supply various internal combustion engines but also to the fuel cells, which are used in various vehicles. The goal of the present study was to review state of art ralative to application of H2 in automotive industry. The reviewy is focused on out-of-engine studies on the effect of H2 combustion process, internal combustion engines supplied with H2 and vehicles utilizing fuel cells. Challenges in applying fuel cells to actual vehicles include limited flexibility in controlling power flow in the PEMFC + B setup, significant power flow losses, complicating the management of energy systems in case of . The PEMFC + B + UC configuration, as well as a low power density of batteries. A drawback of H2 engines is the emission of NOx, which can be lowered by exhaust gas treatment. Fuel cell vehicles (FCVs) can be a clean energy alternative to gasoline-powered cars. However, their development depends on H2 fuel availability and more refueling infrastructure.
REFERENCES (138)
1.
Abele AR. Quantum hydrogen storage systems, Sacramento, CA 2006.
 
2.
Ahmed SS, Mauß F, Moréac G, Zeuch T. A comprehensive and compact n-heptane oxidation model derived using chemical lumping. Phys Chem Chem Phys. 2007;9:1107-1126. https://doi.org/10.1039/B61471....
 
3.
Aldajah S, Ajayi OO, Fenske GR, Goldblatt IL. Effect of exhaust gas recirculation (EGR) contamination of diesel engine oil on wear. Wear. 2007;263:93-98. https://doi.org/10.1016/j.wear....
 
4.
Alrazen HA, Abu Talib AR, Adnan R, Ahmad KA. A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine. Renew Sustain Energy Rev. 2016;54:785-796. https://doi.org/10.1016/j.rser....
 
5.
Altinay G, Macdonald RG. Determination of the rate constant for the OH(X2 Π) + OH(X2 Π) → H2 O + O(3 P) reaction over the temperature range 295 to 701 K. J Phys Chem A. 2014;118:38-54. https://doi.org/10.1021/jp4093....
 
6.
Aritra C, Suhail D, Bijan KM. Combustion performance and emission characteristics of hydrogen as an internal combustion engine fuel. J Aeronaut Automot Eng JAAE. 2014;1:1-6.
 
7.
Ayissi MZ, Newen IA, Alloune R, Bitondo D. Effects of gasoline and hydrogen blends on exhaust gas emissions and fuel consumption from gasoline internal combustion engines. J Combust. 2022;2022:1-10. https://doi.org/10.1155/2022/5....
 
8.
Baba MA, Labbadi M, Cherkaoui M, Maaroufi M. Fuel cell electric vehicles: a review of current power electronic converters topologies and technical challenges. IOP Conf Ser Earth Environ Sci. 2021;785:012011. https://doi.org/10.1088/1755-1....
 
9.
Bajerlein M, Bor M, Karpiuk W, Smolec R, Spadło M. Strength analysis of critical components of high-pressure fuel pump with hypocycloid drive. Bull Pol Acad Sci Tech Sci. 2020:1341-1350. https://doi.org/10.24425/bpast....
 
10.
Bakar RA, Widudo, Kadirgama K, Ramasamy D, Yusaf T, Kamarulzaman MK et al. Experimental analysis on the performance, combustion/emission characteristics of a DI diesel engine using hydrogen in dual fuel mode. Int J Hydrog Energy. 2024;52:843-860. https://doi.org/10.1016/j.ijhy....
 
11.
Bao L, Sun B, Luo Q, Li J, Qian D, Ma H et al. Development of a turbocharged direct-injection hydrogen engine to achieve clean, efficient, and high-power performance. Fuel. 2022;324:124713. https://doi.org/10.1016/j.fuel....
 
12.
Bor M, Borowczyk T, Idzior M, Karpiuk W, Smolec R. Analysis of hypocycloid drive application in a high-pressure fuel pump. MATEC Web Conf. 2017;118:00020. https://doi.org/10.1051/matecc....
 
13.
Bor M, Borowczyk T, Karpiuk W, Smolec R. Determination of the response time of new generation electromagnetic injectors as a function of fuel pressure using the internal photoelectric effect. 2018 Int. Interdiscip. PhD Workshop IIPhDW, Swinoujście: IEEE; 2018. https://doi.org/10.1109/iiphdw....
 
14.
Brzeżański M, Papuga T, Rodak Ł. Analysis of creation and combustion process of hydrogen-air mixtures by optical method in isochoric chamber. Combustion Engines. 2017;170:121-125. https://doi.org/10.19206/CE-20....
 
15.
Brzeżański M, Rodak Ł. Investigation of a new concept of hydrogen supply for a spark-ignition engine. Combust Engines. 2019;178:140-143. https://doi.org/10.19206/CE-20....
 
16.
Brzeżański M, Rodak Ł. Influence of the method of creating a hydrogen-air mixture on the emission of nitrogen oxides in a spark-ignition engine. Combustion Engines. 2019;178:224-227. https://doi.org/10.19206/CE-20....
 
17.
Brzeżański M, Szałek A, Szramowiat M. Tests of the vehicle’s power unit with fuel cells at a reduced ambient temperature. Combustion Engines. 2019;179:65-69. https://doi.org/10.19206/CE-20....
 
18.
Burke MP, Chaos M, Ju Y, Dryer FL, Klippenstein SJ. Comprehensive H2/O2 kinetic model for high‐pressure combustion. Int J Chem Kinet. 2012;44:444-474. https://doi.org/10.1002/kin.20....
 
19.
Burke MP, Klippenstein SJ. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry. Nat Chem. 2017;9:1078-1082. https://doi.org/10.1038/nchem.....
 
20.
Chandran M, Palanisamy K, Benson D, Sundaram S. A review on electric and fuel cell vehicle anatomy, technology evolution and policy drivers towards EVs and FCEVs market propagation. Chem Rec. 2022;22:e202100235. https://doi.org/10.1002/tcr.20....
 
21.
Combusion Research Group. The San Diego Mechanism: chemical kinetic mechanisms for combustion applications. 2014.
 
22.
Dagaut P, Lecomte F, Mieritz J, Glarborg P. Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO H2 mixtures. Int J Chem Kinet. 2003;35:564-575. https://doi.org/10.1002/kin.10....
 
23.
Das LM. Hydrogen engines: design, performance evaluation, combustion analysis, and exhaust emissions. 1st ed. Newark: John Wiley & Sons, Incorporated; 2025.
 
24.
Daszkiewicz P, Kołodziejek D. Comparison and analysis of modern combustion powertrain systems of rail vehicles. Combustion Engines. 2024;196:46-53. https://doi.org/10.19206/CE-17....
 
25.
Davis SG, Joshi AV, Wang H, Egolfopoulos F. An optimized kinetic model of H2/CO combustion. Proc Combust Inst. 2005;30:1283-1292. https://doi.org/10.1016/j.proc....
 
26.
Davy M, Evans RL, Mezo A. The ultra lean burn partially stratified charge natural gas engine. SAE Technical Paper 2009-24-0115. 2009. https://doi.org/10.4271/2009-2...
 
27.
Escalante Soberanis MA, Fernandez AM. A review on the technical adaptations for internal combustion engines to operate with gas/hydrogen mixtures. Int J Hydrog Energy. 2010;35:12134-12140. https://doi.org/10.1016/j.ijhy....
 
28.
Fang T, Vairin C, Von Jouanne A, Agamloh E, Yokochi A. Review of fuel-cell electric vehicles. Energies. 2024;17:2160. https://doi.org/10.3390/en1709....
 
29.
Fiore M, Magi V, Viggiano A. Internal combustion engines powered by syngas: a review. Appl Energy. 2020;276:115415. https://doi.org/10.1016/j.apen....
 
30.
FotonMotor. The first hydrogen fuel cell bus in Mexico originated from Foton 2024. https://www.fotonmotor.com/new....
 
31.
Fu Z, Li Y, Wu W, Li Y, Gao W. Experimental study on the combustion and emission performance of the hydrogen direct injection engine. Int J Hydrog Energy. 2024;61:1047-1059. https://doi.org/10.1016/j.ijhy....
 
32.
Gao J, Wang X, Song P, Tian G, Ma C. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel. 2022;307:121553. https://doi.org/10.1016/j.fuel....
 
33.
Gao N, Geng Z, Zhao W, Geng L, Dong F, Huang D. Review on the combustion and emission characteristics of hydrogen engine. Int J Hydrog Energy. 2025;143:121-146. https://doi.org/10.1016/j.ijhy....
 
34.
Gao W, Fu Z, Li Y, Li Y, Zou J. Progress of performance, emission, and technical measures of hydrogen fuel internal-combustion engines. Energies. 2022;15:7401. https://doi.org/10.3390/en1519....
 
35.
Gharehghani A, Hosseini R, Mirsalim M, Yusaf TF. A computational study of operating range extension in a natural gas SI engine with the use of hydrogen. Int J Hydrog Energy. 2015;40:5966-5975. https://doi.org/10.1016/j.ijhy....
 
36.
Gis M, Gis W. The current state and prospects for hydrogenisation of motor transport in Northwestern Europe and Poland. Combustion Engines. 2022;190(3):61-71. https://doi.org/10.19206/CE-14....
 
37.
Günaydın ÖF, Topçu S, Aksoy A. Hydrogen fuel cell vehicles: Overview and current status of hydrogen mobility. Int J Hydrog Energy. 2025:S0360319925004562. https://doi.org/10.1016/j.ijhy....
 
38.
Habib MA, Abdulrahman GAQ, Alquaity ABS, Qasem NAA. Hydrogen combustion, production, and applications: A review. Alex Eng J. 2024;100:182-207. https://doi.org/10.1016/j.aej.....
 
39.
Hagos FY, Aziz ARA, Sulaiman SA. Trends of syngas as a fuel in internal combustion engines. Adv Mech Eng. 2014;6:401587. https://doi.org/10.1155/2014/4....
 
40.
Hames Y, Kaya K, Baltacioglu E, Turksoy A. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrog Energy. 2018;43:10810-10821. https://doi.org/10.1016/j.ijhy....
 
41.
Hassan Q, Azzawi IDJ, Sameen AZ, Salman HM. Hydrogen fuel cell vehicles: opportunities and challenges. Sustainability. 2023;15:11501. https://doi.org/10.3390/su1515....
 
42.
Healy D, Kalitan DM, Aul CJ, Petersen EL, Bourque G, Curran HJ. Oxidation of C1−C5 alkane quinternary natural gas mixtures at high pressures. Energy Fuels. 2010;24:1521-1528. https://doi.org/10.1021/ef9011....
 
43.
Heller K, Ellgas S. Optimization of hydrogen internal combustion engine with cryogenicmixture formation. Graz, Austria: 2006, p. 49-58.
 
44.
Hong Z, Cook RD, Davidson DF, Hanson RK. A shock tube study of OH + H2 O2 → H2 O + HO2 and H2 O2 + M → 2OH + M using laser absorption of H2 O and OH. J Phys Chem A. 2010;114:5718-5727. https://doi.org/10.1021/jp1002....
 
45.
Hong Z, Davidson DF, Hanson RK. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust Flame. 2011;158:633-644. https://doi.org/10.1016/j.comb....
 
46.
Hydrogen Central. Hydrogen bus tested on the streets of Romania 2021. https://hydrogen-central.com/h....
 
47.
Jasper AW, Kamarchik E, Miller JA, Klippenstein SJ. First-principles binary diffusion coefficients for H, H2, and four normal alkanes + N2. J Chem Phys. 2014;141:124313. https://doi.org/10.1063/1.4896....
 
48.
Jasper AW, Miller JA. Lennard–Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials. Combust Flame. 2014;161:101-110. https://doi.org/10.1016/j.comb....
 
49.
Kéromnès A, Metcalfe WK, Heufer KA, Donohoe N, Das AK, Sung C-J et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust Flame. 2013;160:995-1011. https://doi.org/10.1016/j.comb....
 
50.
Kim J, Chun KM, Song S, Baek H-K, Lee SW. The effects of hydrogen on the combustion, performance and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation. Int J Hydrog Energy. 2017;42:25074-25087. https://doi.org/10.1016/j.ijhy....
 
51.
Klippenstein SJ. From theoretical reaction dynamics to chemical modeling of combustion. Proc Combust Inst. 2017;36:77-111. https://doi.org/10.1016/j.proc....
 
52.
Konnov AA. Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combust Flame. 2008;152:507-528. https://doi.org/10.1016/j.comb....
 
53.
Konnov AA. On the role of excited species in hydrogen combustion. Combust Flame. 2015;162:3755-3772. https://doi.org/10.1016/j.comb....
 
54.
Konnov AA. Yet another kinetic mechanism for hydrogen combustion. Combust Flame. 2019;203:14-22. https://doi.org/10.1016/j.comb....
 
55.
Kovar Z, Scholz C, Beroun S, Nydrle M, Drozda H, Blazek J et al. Hydrogen piston engines: R&D, experiences. Combustion Engines. 2006;125:28-36. https://doi.org/10.19206/CE-11....
 
56.
Lamb KE, Webb CJ. A quantitative review of slurries for hydrogen storage – slush hydrogen, and metal and chemical hydrides in carrier liquids. J Alloys Compd. 2022;906:164235. https://doi.org/10.1016/j.jall....
 
57.
Lee S, Kim G, Bae C. Effect of mixture formation mode on the combustion and emission characteristics in a hydrogen direct-injection engine under different load conditions. Appl Therm Eng. 2022;209:118276. https://doi.org/10.1016/j.appl....
 
58.
Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire JJ. A comprehensive kinetic mechanism for CO, CH2 O, and CH3 OH combustion. Int J Chem Kinet. 2007;39:109-136. https://doi.org/10.1002/kin.20....
 
59.
Li J, Zhao Z, Kazakov A, Dryer FL. An updated comprehensive kinetic model of hydrogen combustion. Int J Chem Kinet. 2004;36:566-575. https://doi.org/10.1002/kin.20....
 
60.
Liu X, Liu F, Zhou L, Sun B, Schock H. Backfire prediction in a manifold injection hydrogen internal combustion engine. Int J Hydrog Energy. 2008;33:3847-3855. https://doi.org/10.1016/j.ijhy....
 
61.
Małek A. Adaptive search for a PEM fuel cell maximum net power. Combustion Engines. 2011;145:49-57. https://doi.org/10.19206/CE-11....
 
62.
Manigandan S, Ryu JI, Praveen Kumar TR, Elgendi M. Hydrogen and ammonia as a primary fuel – a critical review of production technologies, diesel engine applications, and challenges. Fuel. 2023;352:129100. https://doi.org/10.1016/j.fuel....
 
63.
Marei MI, Lambert S, Pick R, Salama MMA. DC/DC converters for fuel cell powered hybrid electric vehicle. 2005 IEEE Veh. Power Propuls. Conf., Chicago, IL, USA: IEEE; 2005:556-559. https://doi.org/10.1109/VPPC.2....
 
64.
Masood M, Mehdi SN, Ram Reddy P. Experimental investigations on a hydrogen-diesel dual fuel engine at different compression ratios. J Eng Gas Turbines Power. 2007;129: 572-578. https://doi.org/10.1115/1.2227....
 
65.
Matla J. Possible applications of prechambers in hydrogen internal combustion engines. Combustion Engines. 2022;191(4):77-82. https://doi.org/10.19206/CE-14....
 
66.
Matla J, Kaźmierczak A, Haller P, Trocki M. Hydrogen as a fuel for spark ignition combustion engines – state of knowledge and concept. Combustion Engines. 2024;196:73-79. https://doi.org/10.19206/CE-17....
 
67.
Meisner J, Kästner J. Reaction rates and kinetic isotope effects of H2 + OH → H2O + H. J Chem Phys. 2016;144:174303. https://doi.org/10.1063/1.4948....
 
68.
Menes M. Program initiatives of public authorities in the field of hydrogenation of the economy in a global perspective, as of the end of 2020. Combustion Engines. 2022;189:18-29. https://doi.org/10.19206/CE-14....
 
69.
Mitianiec W. Modelling and simulation of working processes in Wankel engine with direct hydrogen injection system. Combustion Engines. 2015;161:42-52. https://doi.org/10.19206/CE-11....
 
70.
Muraki H, Zhang G. Design of advanced automotive exhaust catalysts. Catal Today. 2000;63:337-345. https://doi.org/10.1016/S0920-....
 
71.
Musy F, Ortiz R, Ortiz I, Ortiz A. Hydrogen-fuelled internal combustion engines: direct injection versus port-fuel injection. Int J Hydrog Energy. 2024:S0360319924028106. https://doi.org/10.1016/j.ijhy....
 
72.
Nguyen TL, Stanton JF. Ab Initio thermal rate calculations of HO + HO = O(3 P) + H2 O reaction and isotopologues. J Phys Chem A. 2013;117:2678-2686. https://doi.org/10.1021/jp3122....
 
73.
Nguyen V-L. Couplage des systèmes photovoltaïques et des véhicules électriques au réseau: problèmes et solutions. Université de Grenoble, 2014.
 
74.
Nieścioruk MJ, Bandrow P, Szufa S, Woźniak M, Siczek K. Biomass-based hydrogen extraction and accompanying hazards–review. Molecules. 2025;30:565. https://doi.org/10.3390/molecu....
 
75.
Ó Conaire M, Curran HJ, Simmie JM, Pitz WJ, Westbrook CK. A comprehensive modeling study of hydrogen oxidation. Int J Chem Kinet. 2004;36:603-622. https://doi.org/10.1002/kin.20....
 
76.
Olm C, Zsély IGy, Pálvölgyi R, Varga T, Nagy T, Curran HJ, et al. Comparison of the performance of several recent hydrogen combustion mechanisms. Combust Flame. 2014;161:2219-2234. https://doi.org/10.1016/j.comb....
 
77.
Paluch M, Noga M. Influence of hydrogen addition on performance and ecological parameters of a spark-ignition internal combustion engine at part load typical for urban traffic. Adv Sci Technol Res J. 2025;19:262-270. https://doi.org/10.12913/22998....
 
78.
Paykani A, Chehrmonavari H, Tsolakis A, Alger T, Northrop WF, Reitz RD. Synthesis gas as a fuel for internal combustion engines in transportation. Prog Energy Combust Sci. 2022;90:100995. https://doi.org/10.1016/j.pecs....
 
79.
Pielecha I, Cieślik W, Szałek A. The use of electric drive in urban driving conditions using a hydrogen powered vehicle – Toyota Mirai. Combustion Engines. 2018;172:51-58. https://doi.org/10.19206/CE-20....
 
80.
Pires VF, Cordeiro A, Foito D, Silva JF. High step-up DC–DC converter for fuel cell vehicles based on merged quadratic boost–ćuk. IEEE Trans Veh Technol. 2019;68:7521-7530. https://doi.org/10.1109/TVT.20....
 
81.
Polat F, Sarıdemir S, Gad MS, El-Shafay AS, Ağbulut Ü. Enhancing diesel engine performance, combustion, and emissions reductions under the effect of cerium oxide nanoparticles with hydrogen addition to biodiesel fuel. Int J Hydrog Energy. 2024;83:884-896. https://doi.org/10.1016/j.ijhy....
 
82.
Pramuanjaroenkij A, Kakaç S. The fuel cell electric vehicles: The highlight review. Int J Hydrog Energy. 2023;48:9401-9425. https://doi.org/10.1016/j.ijhy....
 
83.
Prechtl P, Dorer F. Wasserstoff-Dieselmotor mit Direkteinspritzung, hoher Leistungsdichte und geringer Abgasemission: Teil 2: Untersuchung der Gemischbildung, des Zünd- und des Verbrennungsverhaltens. MTZ – Mot Z. 1999;60:830-837. https://doi.org/10.1007/BF0322....
 
84.
Premkartikkumar SR, Annamalai K, Pradeepkumar AR. Using hydrogen as a fuel in automotive engines – an investigation. IJITR Int J Innov Technol Res. 2013;1:90-93.
 
85.
Rameez PV, Mohamed Ibrahim M. A comprehensive review on the utilization of hydrogen in low temperature combustion strategies: combustion, performance and emission attributes. J Energy Inst. 2024;113:101511. https://doi.org/10.1016/j.joei....
 
86.
Rasmussen CL, Hansen J, Marshall P, Glarborg P. Experimental measurements and kinetic modeling of CO/H2 /O2 /NOx conversion at high pressure. Int J Chem Kinet. 2008;40:454-480. https://doi.org/10.1002/kin.20....
 
87.
RenaultGroup. The Renault Master Van H2-Tech, a hydrogen-powered utility vehicle 2022. https://www.renaultgroup.com/e....
 
88.
Rottengruber H, Wiebicke U, Woschni G, Zeilinger K. Wasserstoff-Dieselmotor mit Direkteinspritzung, hoher Leistungsdichte und geringer Abgasemission: Teil 3: Versuche und Berechnungen am Motor. MTZ – Mot Z. 2000;61:122-128. https://doi.org/10.1007/BF0322....
 
89.
Rutkowska-Gorczyca MJ, Dziubek M, Wiśniewski M. Response of hydrogen charging diffusion of the austenitic stainless steel AISI 310s. Combustion Engines. 2024;198:68-73. https://doi.org/10.19206/CE-18....
 
90.
Sadoun R. Intérêt d’une Source d’Energie Electrique Hybride pour véhicule électrique urbain– dimensionnement et tests de cyclage. Ecole Centrale de Lille, 2013.
 
91.
Sakka MA, Van Mierlo J, Gualous H, Lataire P. Comparison of 30KW DC/DC converter topologies interfaces for fuel cell in hybrid electric vehicle, Barcelona, Spain: 2009, p. 1–10.
 
92.
Samuel S, Gonzalez-Oropeza R, Cedillo Cornejo E. Hydrogen fuel cell vehicle for Mexico City. 2020. SAE.Technical Paper 2020-01-1169. 2020. https://doi.org/10.4271/2020-0....
 
93.
Sangwan M, Krasnoperov LN. Disproportionation channel of self-reaction of hydroxyl radical, OH + OH → H2 O + O, studied by time-resolved oxygen atom trapping. J Phys Chem A. 2012;116:11817-11822. https://doi.org/10.1021/jp3088....
 
94.
Saxena P, Williams FA. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust Flame. 2006;145:316-323. https://doi.org/10.1016/j.comb....
 
95.
Shahpouri S, Gordon D, Hayduk C, Rezaei R, Koch CR, Shahbakhti M. Hybrid emission and combustion modeling of hydrogen fueled engines. Int J Hydrog Energy. 2023;48:24037-24053. https://doi.org/10.1016/j.ijhy....
 
96.
Shi C, Ji C, Ge Y, Wang S, Yang J, Wang H. Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine. Energy. 2021;215:119124. https://doi.org/10.1016/j.ener....
 
97.
Shinde BJ, K. K. Recent progress in hydrogen fuelled internal combustion engine (H2ICE) – a comprehensive outlook. Mater Today Proc. 2022;51:1568-1579. https://doi.org/10.1016/j.matp....
 
98.
Sikora M, Orliński P. Hydrotreated vegetable oil fuel within the Fit for 55 package. Combustion Engines. 2024;197(2):3-8. https://doi.org/10.19206/CE-17....
 
99.
Skobiej K. A review of hydrogen combustion and its impact on engine performance and emissions. Combustion Engines. 2025;200(1):64-70. https://doi.org/10.19206/CE-19....
 
100.
Solaris Bus & Coach. Solaris Urbino 18 hydrogen 2025. https://www.solarisbus.com/pub....
 
101.
Sorlei I-S, Bizon N, Thounthong P, Varlam M, Carcadea E, Culcer M et al. Fuel cell electric vehicles—a brief review of current topologies and energy management strategies. Energies. 2021;14:252. https://doi.org/10.3390/en1401....
 
102.
Starik AM, Titova NS, Sharipov AS, Kozlov VE. Syngas oxidation mechanism. Combust Explos Shock Waves. 2010;46:491-506. https://doi.org/10.1007/s10573....
 
103.
Stępień Z. A comprehensive overview of hydrogen-fueled internal combustion engines: achievements and future challenges. Energies. 2021;14:6504. https://doi.org/10.3390/en1420....
 
104.
Stępień Z. Analysis of the prospects for hydrogen-fuelled internal combustion engines. Combustion Engines. 2024;197(2):32-41. https://doi.org/10.19206/CE-17....
 
105.
Sun H, Yang SI, Jomaas G, Law CK. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc Combust Inst. 2007;31:439-446. https://doi.org/10.1016/j.proc....
 
106.
Sun P, Zhang Z, Chen J, Liu S, Zhang DH. Well converged quantum rate constants for the H2 + OH → H2O + H reaction via transition state wave packet. J Chem Phys. 2018;149:064303. https://doi.org/10.1063/1.5046....
 
107.
Sutherland JW, Patterson PM, Klemm RB. Rate constants for the reaction, O(3P)+H2O¶OH+OH, over the temperature range 1053 K to 2033 K using two direct techniques. Symp Int Combust. 1991;23:51-57. https://doi.org/10.1016/S0082-....
 
108.
Szamrej G, Karczewski M. Exploring hydrogen-enriched fuels and the promise of HCNG in industrial dual-fuel engines. Energies. 2024;17:1525. https://doi.org/10.3390/en1707....
 
109.
Szlachetka M, Wendeker M, Czarnigowski J, Jakliński P, Grabowski Ł. A simulation research of a hydrogen injection system for a Wankel engine. Combustion Engines. 2010;141:114-122. https://doi.org/10.19206/CE-11....
 
110.
Szwaja S. Hydrogen resistance to knock combustion in spark ignition internal combustion engines. Combustion Engines. 2011;144:13-19. https://doi.org/10.19206/CE-11....
 
111.
Szwajca F, Gawrysiak C, Pielecha I. Effects of passive pre-chamber jet ignition on knock combustion at hydrogen engine. Combustion Engines. 2024;198:110-122. https://doi.org/10.19206/CE-18....
 
112.
Taib NM, Abu Mansor MR, Wong WY. Hydrogen combustion in transportation and power generation. In: Su’ait MS, Jarimi H, Noor SAM, editors. ACS Symp. Ser., 1499, Washington, DC: American Chemical Society; 2025:169-192. https://doi.org/10.1021/bk-202....
 
113.
Teoh YH, How HG, Le TD, Nguyen HT, Loo DL, Rashid T et al. A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel. 2023;333:126525. https://doi.org/10.1016/j.fuel....
 
114.
The CRECK Modelling Group. Hydrogen/CO Mech. Version 2012.
 
115.
Toyota Europe. Outline of the Mirai 2017. www.toyota-europe.com.
 
116.
University of California – Berkeley. GRI-Mech 3.0 1999.
 
117.
Ustolin F, Paltrinieri N, Berto F. Loss of integrity of hydrogen technologies: A critical review. Int J Hydrog Energy. 2020;45:23809-23840. https://doi.org/10.1016/j.ijhy....
 
118.
Varga T, Nagy T, Olm C, Zsély IGy, Pálvölgyi R, Valkó É et al. Optimization of a hydrogen combustion mechanism using both direct and indirect measurements. Proc Combust Inst. 2015;35:589-596. https://doi.org/10.1016/j.proc....
 
119.
Varga T, Olm C, Nagy T, Zsély IGy, Valkó É, Pálvölgyi R et al. Development of a joint hydrogen and syngas combustion mechanism based on an optimization approach. Int J Chem Kinet. 2016;48:407-422. https://doi.org/10.1002/kin.21....
 
120.
Verhelst S, Demuynck J, Sierens R, Scarcelli R, Matthias NS, Wallner T. Update on the progress of hydrogen-fueled internal combustion engines. Renew Hydrog Technol. 2013:381-400. https://doi.org/10.1016/B978-0....
 
121.
Verhelst S, Wallner T. Hydrogen-fueled internal combustion engines. Prog Energy Combust Sci. 2009;35:490-527. https://doi.org/10.1016/j.pecs....
 
122.
Verhelst S, Wallner T, Eichlseder H, Naganuma K, Gerbig F, Boyer B et al. Electricity powering combustion: hydrogen engines. Proc IEEE. 2012;100:427-439. https://doi.org/10.1109/JPROC.....
 
123.
Voelcker J. Hydrogen fuel-cell vehicles: everything you need to know. Car Driv. 2024. https://www.caranddriver.com/f....
 
124.
Vogel C. Wasserstoff-Dieselmotor mit Direkteinspritzung, hoher Leistungsdichte und geringer Abgasemission: Teil 1: Konzept. MTZ – Mot Z. 1999;60:704-708. https://doi.org/10.1007/BF0322....
 
125.
Wallner T, Lohsebusch H, Gurski S, Duoba M, Thiel W, Martin D et al. Fuel economy and emissions evaluation of BMW Hydrogen 7 Mono-Fuel demonstration vehicles. Int J Hydrog Energy. 2008;33:7607-7618. https://doi.org/10.1016/j.ijhy....
 
126.
Wang H, You X, Ameya JV, Davis SG, Laskin A, Egolfopoulos F et al. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. 2007.
 
127.
Waseem M, Amir M, Lakshmi GS, Harivardhagini S, Ahmad M. Fuel cell-based hybrid electric vehicles: An integrated review of current status, key challenges, recommended policies, and future prospects. Green Energy Intell Transp. 2023;2:100121. https://doi.org/10.1016/j.geit....
 
128.
Waseem M, Lakshmi GS, Sreeshobha E, Khan S. An electric vehicle battery and management techniques: comprehensive review of important obstacles, new advancements, and recommendations. Energy Storage Sav. 2025;4:83-108. https://doi.org/10.1016/j.enss....
 
129.
Welsch R. Rigorous close-coupling quantum dynamics calculation of thermal rate constants for the water formation reaction of H2 + OH on a high-level PES. J Chem Phys. 2018;148:204304. https://doi.org/10.1063/1.5033....
 
130.
Wesołowski M, Hamid M, Mońka P, Janicka A. Analysis of the potential of electro-waste as a source of hydrogen to power low-emission vehicle powertrains. Combustion Engines. 2024;196:126-133. https://doi.org/10.19206/CE-16....
 
131.
Wooldridge MS, Hanson RK, Bowman CT. A shock tube study of the OH + OH → H2 O + O reaction. Int J Chem Kinet. 1994;26:389-401. https://doi.org/10.1002/kin.55....
 
132.
Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A. Hydrogen internal combustion engine vehicles: a review. Energies. 2022;15:8937. https://doi.org/10.3390/en1523....
 
133.
Xiao T, He A, Pei X, Pan M, Wang X, Hu Z. Research on hydrogen-fueled turbojet engine control method based on model-based design. Processes. 2023;11:3268. https://doi.org/10.3390/pr1112....
 
134.
Zadrąg R, Socik P, Kniaziewicz T, Zacharewicz M, Bogdanowicz A, Wirkowski P. Analysis of simulated dynamic loads of a ship propulsion systemof a non-conventional power system. Combustion Engines. 2024;197(2):158-168. https://doi.org/10.19206/CE-18....
 
135.
Zhao F, Sun B, Yuan S, Bao L, Wei H, Luo Q. Experimental and modeling investigations to improve the performance of the near-zero NOx emissions direct-injection hydrogen engine by injection optimization. Int J Hydrog Energy. 2024;49:713-724. https://doi.org/10.1016/j.ijhy....
 
136.
Zhou A. Review of hydrogen fuel cell vehicle research. Acad J Eng Technol Sci. 2022;5. https://doi.org/10.25236/AJETS....
 
137.
Zhu D, Shu B. Recent progress on combustion characteristics of ammonia-based fuel blends and their potential in internal combustion engines. Int J Automot Manuf Mater. 2023:20. https://doi.org/10.53941/ijamm....
 
138.
Zsély IGy, Zádor J, Turányi T. Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms. Proc Combust Inst. 2005;30:1273-1281. https://doi.org/10.1016/j.proc....
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top