Spray structures formed by a multi-nozzle injector during the injection of a multi-component surrogate synthetic fuel under flash-boiling conditions
 
More details
Hide details
1
Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Poland
 
2
Faculty of Sciences, Physics Department, University of Lisbon, Portugal
 
3
Faculty of Mechanical and Ship Technology, Institute of Naval Architecture, Gdańsk University of Technology, Poland
 
 
Submission date: 2025-07-08
 
 
Final revision date: 2025-11-14
 
 
Acceptance date: 2025-11-18
 
 
Online publication date: 2025-12-19
 
 
Corresponding author
Henry Andres Porras Perucho   

Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, ul. Nowowiejska 21/25, 00-665, Warszawa, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The introduction of synthetic fuels into spark-ignition direct-injection engines requires a deeper understanding of the injection and spray formation process. It also includes spray formation under flash-boiling conditions, which has not been of primary importance so far. This research focuses on experimental studies of spray propagation and its morphological features when moderate flash boiling is achieved. Our main objective is to verify this effect in a multiple-nozzle injection system for a selected synthetic fuel. It is accomplished by increasing the fuel temperature. The results showed that the spray structure changed slightly due to flash-boiling, but the secondary effects related to the rapid vaporisation of the injected fuel, such as spray collapse, were not observed.
REFERENCES (29)
1.
Atac OF, Moon S, Jeon J. Unraveling the initial flash boiling spray formation at the same superheated index achieved by altering ambient pressure and fuel temperature independently. Int J Heat Mass Transf. 2021;169:120897. https://doi.org/10.1016/j.ijhe....
 
2.
Bachanek J, Rogóż R, Pachler K, Tatschl R, Teodorczyk A, Kapusta ŁJ. Experimental study and empirical modelling of direct-injection n-heptane sprays formed under flash-boiling conditions. Int J Heat Mass Transf. 2025;236:126282. https://doi.org/10.1016/j.ijhe....
 
3.
Badawy T, Xu H, Li Y. Macroscopic spray characteristics of iso-octane, ethanol, gasoline and methanol from a multi-hole injector under flash boiling conditions. Fuel. 2022;307:121820. https://doi.org/10.1016/j.fuel....
 
4.
Bar-Kohany T, Arogeti M, Malka A, Sher E. Advances in liquid atomization via flash boiling – a global overview. Energies. 2023;16(19):6763. https://doi.org/10.3390/en1619....
 
5.
Bar-Kohany T, Levy M. State of the art review of flash-boiling atomization. At Sprays. 2016;26(12):1259-1305. https://doi.org/10.1615/atomiz....
 
6.
Bosch Motorsport. HP Injection Valve HDEV 5.2. https://www.bosch-motorsport.c....
 
7.
Cremades LV., Oller L. Techno-environmental feasibility of synthetic fuels in ground transportation. Application to the Spanish automobile fleet in 2035. Energy Reports. 2024;11:5466-5474. https://doi.org/10.1016/j.egyr....
 
8.
Cui M, Nour M, Fu J, Zhang W, Wang G, Xu H, et al. Fundamental investigation of methanol flash boiling combustion under direct injection conditions. Combust Flame. 2025;276. https://doi.org/10.1016/j.comb....
 
9.
Deutz S, Bongartz D, Heuser B, Kätelhön A, Schulze Langenhorst L, Omari A et al. Cleaner production of cleaner fuels: Wind-to-wheel-environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci. 2018;11(2):331-343. https://doi.org/10.1039/c7ee01....
 
10.
Huang W, Oguma M, Kinoshita K, Abe Y, Tanaka K. Investigating spray characteristics of synthetic fuels: comparative analysis with gasoline. Int J Automot Manuf Mater. 2024;2-2. https://doi.org/10.53941/ijamm....
 
11.
Hutchison BRM, Wallace JS. Influence of fuel volatility on particulate matter emissions from a production DISI engine. Fuel. 2021;303:121206. https://doi.org/10.1016/j.fuel....
 
12.
Hwang J, Karathanassis IK, Koukouvinis P, Nguyen T, Tagliante F, Pickett LM et al. Spray process of multi-component gasoline surrogate fuel under ECN Spray G conditions. Int J Multiph Flow. 2024;174:104753. https://doi.org/10.1016/j.ijmu....
 
13.
International Energy Agency. Global Energy Review 2025 – Natural Gas. 2025. https://www.iea.org/reports/gl....
 
14.
Kalghatgi G, Agarwal AK, Senecal K, Leach F. Introduction to engines and fuels for future transport. Energy, Environment, and Sustainability. 2022:1-5. https://doi.org/10.1007/978-98....
 
15.
Kannaiyan K, Sadr R. Experimental investigation of spray characteristics of alternative aviation fuels. Energy Convers Manag. 2014;88:1060-1069. https://doi.org/10.1016/j.enco....
 
16.
Kapusta ŁJ. Understanding the collapse of flash-boiling sprays formed by multi-hole injectors operating at low injection pressures. Energy. 2022;247:123388. https://doi.org/10.1016/j.ener....
 
17.
Letcher TM. Introduction with a focus on atmospheric carbon dioxide and climate change. Future Energy: Improved. Sustainable and Clean Options for Our Planet. 2020:3-17. https://doi.org/10.1016/b978-0....
 
18.
Li X, Xiang L, Wang L, Wang Z, Hu Y. Experimental study on macroscopic and microscopic characteristics of flash boiling methanol spray under extremely cold conditions. Energy Convers Manag. 2025;333:119780. https://doi.org/10.1016/j.enco....
 
19.
Liu G, Larson ED. Comparison of coal/biomass co-processing systems with CCS for production of low-carbon synthetic fuels: methanol-to-gasoline and Fischer-Tropsch. Energy Procedia. 2014:7315-7329. https://doi.org/10.1016/j.egyp....
 
20.
Neroorkar K, Schmidt D. Modeling of vapor-liquid equilibrium of gasoline-ethanol blended fuels for flash boiling simulations. Fuel. 2011;90(2):665-673. https://doi.org/10.1016/j.fuel....
 
21.
Ram V, Salkuti SR. An overview of major synthetic fuels. Energies. 2023:16.. https://doi.org/10.3390/en1606....
 
22.
Robinson AJ, Judd RL. Bubble growth in a uniform and spatially distributed temperature field. Int J Heat Mass Transf. 2001;44(14):2699-2710. https://doi.org/10.1016/S0017-....
 
23.
Saha A, Grenga T, Deshmukh AY, Hinrichs J, Bode M, Pitsch H. Numerical modeling of single droplet flash boiling behavior of e-fuels considering internal and external vaporization. Fuel. 2022;308:121934. https://doi.org/10.1016/j.fuel....
 
24.
Senda J, Hojyo Y, Fujimoto H. Modeling on atomization and vaporization process in flash boiling spray. JSAE Rev. 1994;15(4):291-296. https://doi.org/10.1016/0389-4....
 
25.
Smith JM, Ness HC Van, Abbott MM, Swihart MT. Introduction to chemical engineering thermodynamics eighth edition. 8 ed. New York: McGraw-Hill 2018:68-132.
 
26.
Stępień Z. Synthetic automotive fuels. Combustion Engines. 2023;192(1):78-90. https://doi.org/10.19206/CE-15....
 
27.
Uchida N, Onorati A, Novella R, Agarwal AK, Abdul-Manan AFN, Kulzer AC et al. E-fuels in IC engines: a key solution for a future decarbonized transport. Int J Eng Res. 2025. https://doi.org/10.1177/146808....
 
28.
Xu M, Zhang Y, Zeng W, Zhang G, Zhang M. Flash boiling: easy and better way to generate ideal sprays than the high injection pressure. SAE Int J Fuels Lubr. 2013;6(1):137-148. https://doi.org/10.4271/2013-0....
 
29.
Zeng W, Xu M, Zhang G, Zhang Y, Cleary DJ. Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel. 2012;95:287-297. https://doi.org/10.1016/j.fuel....
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top