KEYWORDS
TOPICS
ABSTRACT
The article is a multi-directional review of the current knowledge in the field of particulate matter emissions from motor vehicles, but not related to the combustion process in piston combustion engines. A summary of the research results available in the literature was provided regarding the size and composition of particulate emissions from abrasive wear of working elements of brake systems and tires. The mechanisms of particulate matter formation related to the wear processes of brake pads, discs and tires were described. Reference was made to currently available research results regarding the harmful, toxicological impact on health of chemical components contained in particulate matter, in particular on diseases of the respiratory and cardiovascular systems. A critical analysis of various, previously unstandardized measurement and assessment methods for the emissions of this particulate matter category was carried out, pointing to future needs. Relating, in particular, to the requirements of the new Euro 7 standard.
REFERENCES (164)
1.
Aatmeeyata DSK, Sharma M. Traffic generated non-exhaust particulate emissions from concrete pavement: a mass and particle size study for two-wheelers and small cars. Atmos Environ. 2007;43(35):5691-5697. https://doi.org/10.1016/j.atmo....
 
2.
Adamiak B, Szczotka A, Woodburn J, Merkisz J. Comparison of exhaust emission results obtained from Portable Emissions Measurement System (PEMS) and a laboratory system. Combustion Engines. 2023;195(4):128-135. https://doi.org/10.19206/CE-17....
 
3.
Adachi K, Tainosho Y. Characterization of heavy metal particles embedded in tire dust. Environ Int. 2004;30(8):1009-1017. https://doi.org/10.1016/j.envi....
 
4.
Adamczak L. At source brake dust active filtering system EB2023-EFA-008. Proceedings of the EuroBrake 2023. Barcelona 12-14 September 2023.
 
5.
Agudelo C, Vedula RT, Collier S, Stanard A. Brake particulate matter emissions measurements for six light-duty vehicles using inertia dynamometer testing. SAE Int J Adv&Curr Prac in Mobility. 2021;3(2):994-1019. https://doi.org/10.4271/2020-0....
 
6.
Air Quality Expert Group (AQEG) non-exhaust emissions from road traffic. UK 2019 (accessed on 7 January 2024).
 
7.
Air Pollution in the UK 2019. September 2020. https://uk-air.defra.gov.uk/li... (accessed on 1 March 2024).
 
8.
Alemani M, Nosko O, Metinoz I, Olofsson U. A study on emission of airborne wear particles from car brake friction pairs. SAE Int J Mater Manuf. 2016;9(1):147-157. https://doi.org/10.4271/2015-0....
 
9.
Alemani M, Wahlström J, Olofsson U. On the influence of car brake system parameters on particulate matter emissions. Wear. 2018;396-397:67-74. https://doi.org/10.1016/j.wear....
 
10.
Amato F, Cassee FR, van der Gon HAC, Gehrig R, Gustafsson M et al. Urban air quality: the challenge of traffic non-exhaust emissions. J Hazard Mater. 2014;275:31-36. https://doi.org/10.1016/j.jhaz....
 
11.
Amato F. An urban air quality problem for public health; impact and mitigation measures. Elsevier 2018. https://doi.org/10.1016/B978-0....
 
12.
Aranke O, Algenaid W, Awe S, Joshi S. Coatings for automotive gray cast iron brake discs: a review. Coatings. 2019;9:552. https://doi.org/10.3390/coatin....
 
13.
Axsen J, Wolinetz M. Reaching 30% plug-in vehicle sales by 2030: modeling incentive and sales mandate strategies in Canada. Transport Res D-Tr E. 2019;65:596-617. https://doi.org/10.1016/j.trd.....
 
14.
Baensch-Baltruschat B, Kocher B, Stock F, Reifferscheid G. Tyre and road wear particles (TRWP) – a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci Total Environ. 2020;733:137823. https://doi.org/10.1016/j.scit....
 
15.
Baensch-Baltruschat B, Kocher B. Kochleus C, Stock F, Reifferscheid G. Tyre and road wear particles – a calculation of generation, transport and release to water and soil with special regard to German roads. Sci Total Environ. 2021;752:141939. https://doi.org/10.1016/j.scit....
 
16.
Beddows DCS, Harrison RM. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: dependence upon vehicle mass and implications for battery electric vehicles. Atmos Environ. 2021;244:117886. https://doi.org/10.1016/j.atmo....
 
17.
Beji A, Deboudt K, Khardi S, Muresan B, Lumière L. Determinants of rear-of-wheel and tire-road wear particle emissions by light-duty vehicles using on-road and test track experiments. Atmos Pollut Res. 2021;12(3):278-291. https://doi.org/10.1016/j.apr.....
 
18.
Belis CA, Karagulian F, Larsen BR, Hopke PK. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ. 2013;63:94-108. https://doi.org/10.1016/j.atmo....
 
19.
Bondorf L, Kohler L, Grein T, Epple F, Philipps F, Aigner M et al. Airborne brake wear emissions from a battery electric vehicle. Atmosphere. 2023;14:488. https://doi.org/10.3390/atmos1....
 
20.
Borawski A. Conventional and unconventional materials used in the production of brake pads – review. Sci Eng Compos Mater. 2020;27:374-396. https://doi.org/10.1515/secm-2....
 
21.
Camatini M, Crosta G, Dolukhanyan T, Sung C, Giuliani G, Corbetta G et al. Microcharacterization and identification of tire debris in heterogeneous laboratory and environmental specimens. Mater Charact. 2001;46:271-283. https://doi.org/10.1016/S1044-....
 
22.
Czerwinski J, Mayer A, Stepien Z, Oleksiak S, Andersen O. Reduction of emissions and unregulated components with DPF + SCR. Conference DEXFIL 2009;11.
 
23.
Dall’Osto M, Querol X, Amato F, Karanasiou A, Lucarelli F, Nava S et al. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS – diurnal variations and PMF receptor modelling. Atmos Chem Phys. 2013;13:4375-4392. https://doi.org/10.5194/acp-13....
 
24.
Dall’Osto M, Beddows DC, Gietl JK, Olatunbosun O, Yang X, Harrison RM. Characteristics of tyre dust in polluted air: studies by single particle mass spectrometry (ATOFMS). Atmos Environ. 2014;94:224-230. https://doi.org/10.1016/j.atmo....
 
25.
Dante RC. Handbook of friction materials and their application. Elsevier 2016. https://doi.org/10.1016/C2015-....
 
26.
Day A, Bryant D. Braking of road vehicles. 2nd ed. Butterworth-Heinemann, Kidlington, Cambridge 2022. https://doi.org/10.1016/B978-0....
 
27.
Dornoff J, Rodríguez F. Euro 7: the new emission standard for light- and heavy-duty vehicles in the European Union. ICCT policy update | Euro 7: emission standard for light- and heavy-duty vehicles in the EU. https://theicct.org/wp-content... (accessed on 21 March 2024).
 
28.
EEA EIONET Central Data Repository, 2023. https://cdr.eionet.europa.eu (accessed on 7 January 2024).
 
29.
EPA. Brake and tire wear emissions from onroad vehicles in MOVES3. Report EPA-420-R-20-014, 2020. https://www.epa.gov/sites/defa... (accessed on 7 January 2024).
 
30.
Etyemezian V. Vehicle-based road dust emission measurement: I methods and calibration. Atmos Environ. 2003;37(32):4559-4571. https://doi.org/10.1016/S1352-....
 
31.
Euro 7 vehicle emission standards: a European Green Deal proposal. Technical studies for the development of Euro 7: testing, pollutants and emission limits. 2022. https://doi.org/10.2873/97170 (accessed on 1 March 2024).
 
32.
European Commission. Directorate general for internal market, industry, entrepreneurship and SMEs. In Euro 7 impact assessment study. Publications Office: Luxembourg 2022.
 
33.
European Commission; EEA Climate and Energy in the EU. Country Comparison. 2023. https://climate-energy.eea.eur... (accessed on 7 January 2024).
 
34.
Faino. 48th PMP IWG meeting tyre and road wear particles: the tyre industry perspective UN WP29 GRPE PMP-48-13. ISPRA – November 8, 2018 (accessed on 1 March 2024).
 
35.
Farwick zum Hagen FH, Mathissen M, Grabiec T, Hennicke T, Rettig M, Grochowicz J et al. Study of brake wear particle emissions: impact of braking and cruising conditions. Environ Sci Technol. 2019;53(9):5143-5150. https://doi.org/10.1021/acs.es....
 
36.
Feißel T, Kunze M, Hesse D, Ivanov V, Augsburg K, Gramstat S. On-road vehicle measurement of tire wear particle emissions and approach for emission prediction. Proceedings of the 40th Annual Meeting of the Tire Society. Akron 2 September 2021 (accessed on 1 March 2024).
 
37.
Feißel T, Hesse D, Ricciardi V, Schiele M, Augsburg M. Novel approaches for measuring and predicting particulate emissions from automotive brakes and tires. 12th International Munich Chassis Symposium 2021:708-728 (accessed on 1 March 2024).
 
38.
Feo ML, Torre M, Tratzi P, Battistelli F, Tomassetti L, Petracchini F et al. Laboratory and on-road testing for brake wear particle emissions: a review. Environ Sci Pollut Res. 2023;30:100282-100300. https://doi.org/10.1007/s11356....
 
39.
Furusjö E, Sternbeck J, Cousins AP. PM10 source characterization at urban and highway roadside locations. Sci Total Environ. 2007;387(1-3):206-219. https://doi.org/10.1016/j.scit....
 
40.
Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W et al. A review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ Sci Technol. 2022;56:6813-6835. https://doi.org/10.1021/acs.es....
 
41.
Garg BD, Cadle SH, Mulawa PA, Groblicki PJ. Brake wear particulate matter emissions. Environ Sci Technol. 2000;34:4463-4469. https://doi.org/10.1021/es0011....
 
42.
Gasser M, Riediker M, Mueller L, Perrenoud A, Blank F, Gehr P et al. Toxic effects of brake wear particles on epithelial lung cells in vitro. Part Fibre Toxicol. 2009;6:30. https://doi.org/10.1186/1743-8....
 
43.
Geilenkirchen G, Hulskotte J, Dellaert S, Ligterink N, Sijstermans M, Roth K et al. Methods for calculating the emissions of transport in the Netherlands. 2021 PBL Netherlands Environmental Assessment Agency. https://www.pbl.nl/en/publicat... methods-for-calculating-the-emissions-of-transport-in-the-netherlands-2021 (acessed on 1 March 2024).
 
44.
Ghouri I, Barker R, Brooks P, Kosarieh S, Barton D. The effects of corrosion on particle emissions from a grey cast iron brake disc. SAE Technical Paper 2022-01-1178. 2022. https://doi.org/10.4271/2022-0....
 
45.
Giechaskiel B, Grigoratos T, Dilara P, Karageorgiou T, Ntziachristos L, Samaras Z. Light-duty vehicle brake emission factors. Atmosphere. 2024;15:1-20. https://doi.org/10.3390/atmos1....
 
46.
Gietl JK, Lawrence R, Thorpe AJ, Harrison RM. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ. 2010;44(2):141-146. https://doi.org/10.1016/j.atmo....
 
47.
Goel A, Kumar P. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos Environ. 2014;97:316-331. https://doi.org/10.1016/j.atmo....
 
48.
Gramstat S, Mertens T, Waninger R, Lugovyy D. Impacts on brake particle emission testing. Atmosphere. 2020;11:1132. https://doi.org/10.3390/atmos1....
 
49.
Gramstat S, Mertens T, Waninger R, Augsburg K, Hamatschek C, Hesse D. Functional coatings of gray-cast iron brake discs – impact on the tribology. Mayer R. (ed). Berichte aus dem μ-Club 2020. Springer Berlin/Heidelberg 2021:162-170. https://doi.org/10.1007/978-3-....
 
50.
Grange SK, Fischer A, Zellweger C, Alastuey A, Querol X, Jaffrezo J-L et al. Switzerland’s PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions. Atmos Environ. 2021;12:100145. https://doi.org/10.1016/j.aeao....
 
51.
Grigoratos T, Martini G. Non-exhaust traffic related emissions. Brake and tyre wear PM. Literature review. Report EUR 26648 EN. European Union, Luxembourg 2014.
 
52.
Grigoratos T, Martini G. Brake wear particle emissions: a review. Environ Sci Pollu. Res. 2015;22:2491-2504. https://doi.org/10.1007/s11356....
 
53.
Grigoratos T, Mathissen M, Vedula R, Mamakos A, Agudelo, C, Gramstat S et al. Interlaboratory study on brake particle emissions – part I: particulate matter mass emissions. Atmosphere. 2023;14:498. https://doi.org/10.3390/atmos1....
 
54.
Grigoratos T, Mamakos A, Vedula R, Arndt M, Lugovyy D, Hafenmayer C et al. Characterization of laboratory particulate matter (PM) mass setups for brake emission measurements. Atmosphere. 2023;14:516. https://doi.org/10.3390/atmos1....
 
55.
GRPE-2023-4e. Clean-(PMP) proposal to amend ECE/TRANS/WP.29/GRPE/2023/4. Proposal for a New UN GTR on laboratory measurement of brake emissions for light-duty vehicles. https://unece.org/transport/do... documents/clean-pmp-proposal-amend-ecetranswp29grpe20234 (accessed on 1 March 2024).
 
56.
Gunawardana C, Goonetilleke A, Egodawatta P, Dawes L, Kokot S. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere. 2012;87(2):163-170. https://doi.org/10.1016/j.chem....
 
57.
Guo D, Wei H, Guo Y, Wang C, Yin Z. Non-exhaust particulate matter emission from vehicles: a review. E3S Web Conf 2021;268:01015. https://doi.org/10.1051/e3scon....
 
58.
Güney B, Mutlu I. Tribological properties of brake discs coated with Cr2O3 – 40% TiO2 by plasma spraying. Surf Rev Lett. 2019;26:1950075. https://doi.org/10.1142/S02186....
 
59.
Hagino H, Oyama M, Sasaki S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos Environ. 2016;131:269-278. https://doi.org/10.1016/j.atmo....
 
60.
Hagino H, Iwata A, Okuda T. Iron oxide and hydroxide speciation in emissions of brake-wear particles from different friction materials using X-ray absorption fine structure. Atmosphere. 2023;15:49. https://doi.org/10.3390/atmos1....
 
61.
Hagino H. Brake wear particle emission measurements based on real driving cycles in several urban areas in a laboratory testing. EB2023-TST-009. Proceedings of the Euro Brakes 2023. Barcelona 12-14 September 2023.
 
62.
Hagino H. Investigation of brake-wear particle emissions from regenerative-friction brake coordination systems via dynamometer testing. Atmosphere. 2024;15:75. https://doi.org/10.3390/atmos1....
 
63.
Hall TJ. A comparison of braking behavior between an IC engine and pure electric vehicle in Los Angeles city driving conditions. SAE Technical Paper 2017-01-2518. 2017. https://doi.org/10.4271/2017-0....
 
64.
Hamatschek C, Hesse D, Augsburg K, Gramstat S, Stich A. Comparison of the particle emission behaviour of automotive drum and disc brakes. 12th International Munich Chassis Symposium 2021. Springer Berlin/Heidelberg, Germany 2022:541-563.
 
65.
Hamatschek C, Augsburg K, Schobel D, Gramstat S, Stich A, Gulden F et al. Comparative study on the friction behaviour and the particle formation process between a laser cladded brake disc and a conventional grey cast iron disc. Metals. 2023;13:300. https://doi.org/10.3390/met130....
 
66.
Han S, Jung YW. A study on the characteristics of silt loading on paved roads in the Seoul metropolitan area using a mobile monitoring system. J Air Waste Manag Assoc. 2012;62(7):846-862. https://doi.org/10.1080/109622....
 
67.
Harrison RM, Jones AM, Gietl J, Yin J, Green DC. Estimation of the contributions of brake dust, tire wear, an resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ Sci Technol. 2012;46;6523-6529. https://doi.org/10.1021/es3008....
 
68.
Hesse D, Hamatschek C, Augsburg K, Weigelt T, Prahst A, Gramstat S. Testing of alternative disc brakes and friction materials regarding brake wear particle emissions and temperature behavior. Atmosphere. 2021;12:436. https://doi.org/10.3390/atmos1....
 
69.
Hesse D, Feißel T, Kunze M, Bachmann E, Bachmann T, Gramstat S. Comparison of methods for sampling particulate emissions from tires under different test environments. Atmosphere. 2022;13:1262. https://doi.org/10.3390/atmos1....
 
70.
Hinrichs R, Soares MRF, Lamb RG, Soares MRF, Vasconcellos MAZ. Phase characterization of debris generated in brake pad coefficient of friction tests. Wear. 2011;270:515-519. https://doi.org/10.1016/j.wear....
 
71.
Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, Dragano N et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation. 2007;116:489-496. https://doi.org/10.1161/CIRCUL....
 
72.
Hooftman N, Oliveira L, Messagie M, Coosemans T, Van Mierlo J. Environmental analysis of petrol, diesel and electric passenger cars in a Belgian urban setting. Energies. 2016;9:84. https://doi.org/10.3390/en9020....
 
73.
Huber MP, Fischer P, Mamakos A, Steiner G, Klug A. Measuring brake wear particles with a real-driving emissions sampling system on a brake dynamometer. SAE Technical Paper 2022-01-1180. 2022. https://doi.org/10.4271/2022-0....
 
74.
Huber MP, Murg J, Steiner G, Wanek-Rüdiger C, Weidinger C, Huemer-Kals S et al. Assessing a vehicle’s real-world brake wear particle emissions on public roads. Eurobrake Conference 2023. https://doi.org/10.46720/eb202....
 
75.
Iijima A, Sato K, Yano K, Tago H, Kato M, Kimura H et al. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos Environ. 2007;41:4908-4919. https://doi.org/10.1016/j.atmo....
 
76.
Iijima A, Sato K, Yano K, Kato M, Kozawa K, Furuta N. Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ Sci Technol. 2008;42:2937-2942. https://doi.org/10.1021/es7021....
 
77.
ISO, ISO/TS 21396:2017 Rubber determination of mass concentration of tire and road wear particles (TRWP) in soil and sediments Pyrolysis-GC/MS method, 2017.
 
78.
Jeong CH, Wang JM, Hilker N, Debosz J, Sofowote U, Su Y et al. Temporal and spatial variability of traffic-related PM2.5 sources: comparison of exhaust and non-exhaust emissions. Atmos Environ. 2019;198:55-69. https://doi.org/10.1016/j.atmo....
 
79.
Kim HS, Na HW, Jang Y, Kim SJ, Kee NG, Shin DY et al. Integrative analysis to explore the biological association between environmental skin diseases and ambient particulate matter. Sci Rep. 2022;12:9750. https://doi.org/10.1038/s41598....
 
80.
Kolbeck K, Schroder T, Schlichting M, Bacher H. Evaluation of different influencing parameters on the result of brake particle emission measurements. EB2022-FBR-011. Proceedings of the EuroBrake 2022. 17-19 May 2022.
 
81.
Kole PJ, Löhr AJ, Van Belleghem FGAJ, Ragas AMJ. Wear and tear of tyres: a stealthy source of microplastics in the environment. Int J Environ Res Public Health. 2017;14(10):1265. https://doi.org/10.3390/ijerph....
 
82.
Koupal J, Den Bleyker A, Kishan S, Vedula R, Agudelo C. Brake wear particulate matter emissions modelling. Eastern Research Group, Boston 2021. https://rosap.ntl.bts.gov/view... (accessed on 9 February 2024).
 
83.
Kreider ML, Panko JM, McAtee BL, Sweet LI, Finley BL. Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies. Sci Total Environ. 2010;408(3):652-659. https://doi.org/10.1016/j.scit....
 
84.
Kukutschová J, Moravec P, Tomášek, Matějka V, Smolik J, Schwarz V et al. On air-borne nano/micro-sized wear particles released fromlow-metallic automotive brakes. Environ Pollut. 2011;159(4):998-1006. https://doi.org/10.1016/j.envp....
 
85.
Kumar P, Pirjola L, Ketzel M, Harrison R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources – a review. Atmos Environ. 2013;67:252-277. https://doi.org/10.1016/j.atmo....
 
86.
Kumata H, Sanada Y, Takada H, Ueno T. Historical trends of n-cyclohexyl-2-benzothiazolamine, 2-(4-morpholinyl)-benzothiazole, and other anthropogenic contaminants in the urban reservoir sediment core. Environ Sci Technol. 2000;34(2):246-253. https://doi.org/10.1021/ES9907....
 
87.
Kunze M, Feißel T, Ivanov V, Bachmann T, David Hesse D, Gramstat S. Analysis of TRWP particle distribution in urban and suburban landscapes, connecting real road measurements with particle distribution simulation. Atmosphere. 2022;13;1204. https://doi.org/10.3390/atmos1....
 
88.
Kwak J-H, Kim H, Lee J, Lee S. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Sci Total Environ. 2013;458-460:273-282. https://doi.org/10.1016/j.scit....
 
89.
Kwak J, Lee S, Lee S. On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions. Atmos Environ. 2014;97:195-205. https://doi.org/10.1016/j.atmo....
 
90.
Lee S, Kwak J, Kim H, Lee J. Properties of roadway particles from interaction between the tire and road pavement. Int J Auto Tech. 2013;14(1):163-173. https://doi.org/10.1007/S12239....
 
91.
Liati A, Schreiber D, Lugovyy D, Gramstat S, Eggenschwiler PD. Airborne particulate matter emissions from vehicle brakes in micro-and nano-scales: morphology and chemistry by electron microscopy. Atmos Environ. 2019;212:281-289. https://doi.org/10.1016/j.atmo....
 
92.
Liu J. Experimental investigation on the morphology of the tire wear particles and its generation mechanism. Tribology. 2017;37(5):587-593. https://doi.org/10.16078/j.tri....
 
93.
Liu Y, Wu S., Chen H, Federici M, Perricone G, Li Y et al. Brake wear induced PM10 emissions during the World Harmonised Light-Duty Vehicle Test Procedure-brake cycle. J Clean Prod. 2022;361;132278. https://doi.org/10.1016/j.jcle....
 
94.
Liu Y, Chen H, Li Y, Gao J, Dave K, Chen J et al. Exhaust and non-exhaust emissions from conventional and electric vehicles: a comparison of monetary impact values. J Clean Prod. 2022;331:129965. https://doi.org/10.1016/j.jcle....
 
95.
Mamakos A, Arndt M, Hesse D, Augsburg K. Physical characterization of brake-wear particles in a PM10 dilution tunnel. Atmosphere. 2019;10:639. https://doi.org/10.3390/atmos1....
 
96.
Matejka V, Metineoz I, Alemani M, Wahlstr€om J, Bonfanti A, Oloffson U et al., Dependency of PM10 particles emission on stability of friction coefficient and character of friction surface. Proceeding EuroBrake 2016, EB2016-MDS-009, Milano 2016.
 
97.
Matejka V, Metinoz I, Wahlstromb J, Alemani M, Perricone G. On the running-in of brake pads and discs for dyno bench tests. Tribol Int. 2017;115:424-431. https://doi.org/10.1016/j.trib....
 
98.
Mathissen M, Scheer V, Vogt R, Benter T. Investigation on the potential generation of ultrafine particles from the tire–road interface. Atmos Environ. 2011;45:6172-6179. https://doi.org/10.1016/j.atmo....
 
99.
Mathissen M, Grochowicz J, Schmidt C, Vogt R, Farwick zum Hagen FH, Grabiec T et al. A novel real-world braking cycle for studying brake wear particle emissions. Wear. 2018;414-415:219-226. https://doi.org/10.1016/j.wear....
 
100.
Mathissen M, Grigoratos T, Lahde T, Vogt R. Brake wear particle emissions of a passenger car measured on a chassis dynamometer. Atmosphere. 2019;10:556. https://doi.org/10.3390/atmos1....
 
101.
Mathissen M, Grigoratos T, Gramstat S, Mamakos A, Vedula R, Agudelo C et al. Interlaboratory study on brake particle emissions. Part II: particle number emissions. Atmosphere. 2023;14:424. https://doi.org/10.3390/atmos1....
 
102.
Maynard D, Coull BA, Gryparis A, Schwartz J. Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ Health Perspect. 2007;115:751-755. https://doi.org/10.1289/ehp.95....
 
103.
Men Z, Zhang X, Peng J, Zhang J, Fang T, Guo Q et al. Determining factors and parameterization of brake wear particle emission. J Hazard Mater. 2022;434:128856. https://doi.org/10.1016/j.jhaz....
 
104.
Mosleh M, Blau PJ, Dumitrescu D. Characteristics and morphology of wear particles from laboratory testing of disk brake materials. Wear. 2004;256;1128-1134. https://doi.org/10.1016/j.wear....
 
105.
Mulani SM, Kumar A, Shaikh HNEA, Saurabh A, Singh PK, Verma PC. A review on recent development and challenges in automotive brake pad-disc system. Mater Today: Proc. 2022;56:447-454. https://doi.org/10.1016/j.matp....
 
106.
National Emissions Reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention). https://www.eea.europa.eu/ds_r... (accessed on 1 March 2024).
 
107.
Niemann H, Winner H, Asbach C, Kaminski H, Frentz G, Milczarek R. Influence of disc temperature on ultrafine, fine, and coarse particle emissions of passenger car disc brakes with organic and inorganic pad binder materials. Atmosphere. 2020;11:1060. https://doi.org/10.3390/atmos1....
 
108.
Nosko O, Vanhanen J, Olofsson U. Emission of 1.3–10 nm airborne particles from brake materials. Aerosol Sci Technol. 2017;51(1):91-96. https://doi.org/10.1080/027868....
 
109.
Ntziachristos L, Boulter P. EMEP/EEA air pollutant emission inventory guidebook 2019 – road transport: automobile tyre and brake wear. EEA Report No 13/2019. ISSN 1977-8449.
 
110.
Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8. https://doi.org/10.1186/1743-8....
 
111.
Olofsson U, Olander L. On the identification of wear modes and transitions using airborne wear particles. Tribol Int. 2013;59:104-113. https://doi.org/10.1016/j.trib....
 
112.
Oroumiyeh F, Zhu Y. Brake and tire particles measured from on-road vehicles: Effects of vehicle mass and braking intensity. Atmos Environ. 2021;12:100121. https://doi.org/10.1016/j.aeao....
 
113.
Panko J, Hitchcock K, Fuller G, Green, D. Evaluation of tire wear contribution to PM2.5 in urban environments. Atmosphere. 2019;10:99. https://doi.org/10.3390/atmos1....
 
114.
Pant P, Harrison RM. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ. 2013;77:78-97. https://doi.org/10.1016/j.atmo....
 
115.
Park J, Joo B, Seo H, Song W, Lee JJ, Lee WK et al. Analysis of wear induced particle emissions from brake pads during the Worldwide Harmonized Light Vehicles Test Procedure (WLTP). Wear. 2021;466-467:203539. https://doi.org/10.1016/j.wear....
 
116.
Perricone G, Alemani M, Metinöz I, Matějka V, Wahlström J, Olofsson U. Towards the ranking of airborne particle emissions from car brakes – a system approach. P I Mech Eng D-J Aut. 2017;231:781-797. https://doi.org/10.1177/095440....
 
117.
Perricone G, Matejka V, Alemani M, Valota G, Bonfanti A, Ciotti A et al. A Concept for Reducing PM 10 emissions for car brakes by 50%. Wear. 2018;396-397:135-145. https://doi.org/10.1016/j.wear....
 
118.
Perricone G, Matejka V, Alemani M, Wahlström J, Olofsson U. A test stand study on the volatile emissions of a passenger car brake assembly. Atmosphere. 2019;10:263. https://doi.org/10.3390/atmos1....
 
119.
Perricone G, Alemani M, Wahlstrom J, Olofsson U. A proposed driving cycle for brake emissions investigation for test stand. P I Mech Eng D-J Aut. 2020;234:122-135. https://doi.org/10.1177/095440....
 
120.
Piras J, Pini F, Di Girolamo P. PM10 emissions from tires: a disruptive estimate questioning present pollution mitigation strategies. Atmos Pollut Res. 2024;15:101939. https://doi.org/10.1016/j.apr.....
 
121.
Pirjola L, Kupiainen KJ, Perhoniemi P, Tervahattu H, Vesala H. Non-exhaust emission measurement system of the mobile laboratory SNIFFER. Atmos Environ. 2009;43(31):4703-4713. https://doi.org/10.1016/j.atmo....
 
122.
Piscitello A, Bianco C, Casasso A, Sethi, R. Non-exhaust traffic emissions: sources, characterization, and mitigation measures. Sci Total Environ. 2021;766:144440. https://doi.org/10.1016/j.scit....
 
123.
Plachá D, Vaculík M, Mikeska M, Dutko O, Peikertová P, Kukutschová J et al. Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear. 2017;376-377:705-716. https://doi.org/10.1016/j.wear....
 
124.
Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc. 2002;287:1132-1141. https://doi.org/10.1001/jama.2....
 
125.
Rahimi M, Bortoluzzi, D, Wahlstrom J. Input parameters for airborne brakewear emission simulations: a comprehensiv review. Atmosphere. 2021;12:871. https://doi.org/10.3390/atmos1....
 
126.
Rexeis M, Hausberger S. Trend of vehicle emission levels until 2020 – prognosis based on current vehicle measurements and future emission legislation. Atmos Environ. 2009;43:4689-4698. https://doi.org/10.1016/j.atmo....
 
127.
Rienda IC, Alves CA. Road dust resuspension: a review. Atmos Res. 2021;261:105740. https://doi.org/10.1016/j.atmo....
 
128.
Sanders PG, Xu N, Dalka TM, Maricq MM. Airborne brakewear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environ Sci Technol. 2003;37(18):4060-4069. https://doi.org/10.1021/es0341....
 
129.
Semadeni-Davies A, Coulson G, Gadd J, Somervell E, Longely I, Olivares G. Determining the ecological and air quality impacts of particulate matter from brake and tyre wear and road surface dust: Stage 1: Literature review and recommendations for developing new emission factors for New Zealand. Kotahi W. (ed.). Transport Agency: Wellington 2021. https://www.nzta.govt.nz/resou....
 
130.
Seo H, Park J, Kim YC, Lee JJ, Jang H. Effect of disc materials on brake emission during moderate-temperature braking. Tribol Int. 2021;163:107185. https://doi.org/10.1016/j.trib....
 
131.
Simons A. Road transport: new life cycle inventories for fossil-fuelled passenger cars and non-exhaust emissions in ecoinvent v3. Int J Life Cycle Assess. 2016;21:1299-1313. https://doi.org/10.1007/s11367....
 
132.
Sinha A, Ischia G, Menapace C, Gialanella S. Experimental characterization protocols for wear products from disc brake materials. Atmosphere. 2020;11:1102. https://doi.org/10.3390/atmos1....
 
133.
Smit R. Non-exhaust PM emissions from battery electric vehicles (BEVs) – does the argument against electric vehicles stack up? TER (Transport Energy/Emission Research Pty Ltd.). Australia 2020. https://www.transport-e-resear... (accessed on 7 January 2024).
 
134.
Sommer F, Dietze V, Baum A, Sauer J, Gilge S, Maschowski C et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual Res. 2018;18(8):2014-2028. https://doi.org/10.4209/aaqr.2....
 
135.
Song W, Park J, Choi J, Lee JJ, Jang H. Effects of reinforcing fibers on airborne particle emissions from brake pads. Wear. 2021;484-485. https://doi.org/10.1016/j.wear....
 
136.
Steege R, Welp D, Lange J. The contribution of brake emissions to the total vehicle emissions. 6th International Munich Chassis Symposium 2015. Pfeffer P. (ed.). Proceedings; Springer: Wiesbaden 2015:585-603.
 
137.
Stępień Z, Czerwinski J, Comte P, Oleksiak S. Nanoparticle and non-legislated gaseous emissions from a gasoline direct-injection car with ethanol blend fuels and detergent additives. Energy&Fuels. 2016;30(9):7268-7276. https://doi.org/10.1021/ACS.EN....
 
138.
Stępień Z, Czerwinski J. Cold start with ethanol-blend fuels and influences on non-legislated emissions of a GDI flex fuel vehicle. Pol J Environ Stud. 2017;26/5:2223-2229. https://doi.org/10.15244/pjoes....
 
139.
Stępień Z. Significance of petrol composition in the formation of fuel injector deposits in direct injection engines. Nafta-Gaz. 2023;3:213-222. https://doi.org/10.18668/NG.20....
 
140.
Stojanovic N, Abdullah OI, Grujic I, Boskovic B. Particles formation due to the wear of tires and measures for the wear reduction: a review. P I Mech Eng D-J Aut. 2022;236:3075-3089. https://doi.org/10.1177/095440....
 
141.
Storch L, Hamatschek C, Hesse D, Feist F, Bachmann T, Eichler P et al. Comprehensive analysis of current primary measures to mitigate brake wear particle emissions from light-duty vehicles. Atmosphere. 2023;14:712. https://doi.org/10.3390/atmos1....
 
142.
Thorpe A, Harrison RM. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ. 2008;400:270-282. https://doi.org/10.1016/j.scit....
 
143.
Timmers VRJH, Achten PAJ. Non-exhaust PM emissions from electric vehicles. Atmos Environ. 2016;134:10-17. https://doi.org/10.1016/j.atmo....
 
144.
Tonegawa Y, Sasaki S. Investigation of analytical methods for tire wear particles. JARI Res J. 2012. 12. J-GLOBAL ID: 201302290885047702. Reference number: 13A0555596.
 
145.
Tonegawa Y, Sasaki S. Development of tire-wear particle emission measurements for passenger vehicles. Emission Control Science and Technology. 2021;7:56-62. https://doi.org/10.1007/s40825....
 
146.
Tutuianu M, Bonnel P, Ciuffo B, Haniu T, Ichikawa N, Marotta A et al. Development of the World-Wide Harmonized Light Duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transport Res D-Tr E. 2015;40:61-75. https://doi.org/10.1016/j.trd.....
 
147.
Unice KM, Kreider ML, Panko JM. Use of a deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment. Int J Environ Res Public Health. 2012;9(11):4033. https://doi.org/10.3390/ijerph....
 
148.
Unice KM, Weeber MP, Abramson MM, Reid RCD, van Gils JAG, Markus AA et al. Characterizing export of land-based microplastics to the estuary – part I: application of integrated geospatial microplastic transport models to assess tire and road wear particles in the seine watershed. Sci Total Environ. 2019;646:1639-1649. https://doi.org/10.1016/j.scit....
 
149.
Van Der Gon HD, Hulskotte J, Jozwicka M, Kranenburg R, Kuenen J, Visschedijk A. Chapter 5 – European emission inventories and projections for road transport non-exhaust emissions: analysis of consistency and gaps in emission inventories from EU member states. Non-Exhaust Emissions. Amato F. (ed.). Academic Press: Cambridge 2018:101-121. https://doi.org/10.1016/B978-0....
 
150.
Van Zeebroek B, De Ceuster G, Elektrische wagens verminderen fijn stof nauwelijks. Transp Mobil Leuven. https://www.tmleuven.be/upload..._ niet-uitlaat_fijn_stof_emissies_lang.pdf.
 
151.
Vasiljević S, Glišović J, Stojanović B, Vencl A. Review of the coatings used for brake discs regarding their wear resistance and environmental effect. P I Mech Eng J-J Eng. 2022;236:1932-1949. https://doi.org/10.1177/135065....
 
152.
Wagner S, Hüffer T, Klöckner P, Wehrhahn M, Hofmann T, Reemtsma T. Tire wear particles in the aquatic environment - a review on generation, analysis, occurrence, fate and effects. Water Res. 2018;139:83-100. https://doi.org/10.1016/j.watr....
 
153.
Wahid SMS. Automotive brake wear: a review. Environ Sci Pollut Res. 2018;25:174-180. https://doi.org/10.1007/s11356....
 
154.
Wahlström J, Söderberg A, Olofsson U. Simulation of airborne wear particles from disc brakes. SAE Technical Paper 2009-01-3040. 2009. https://doi.org/10.4271/2009-0....
 
155.
Wahlström J, Olander, l, Olofsson U. A pin-on-disc study focusing on how different load levels affect the concentration and size distribution of airborne wear particles from the disc brake materials. Tribol Lett. 2010;46(2):195-204. https://doi.org/10.1007/s11249....
 
156.
Wakeling D., Murrells T, Carslaw D, Norris J, Jones L. The contribution of brake wear emissions to particulate matter in ambient air. VDA 2017. http://worldcat.org/issn/21927... (acessed on 5 March 2024).
 
157.
Wik A, Dave G. Occurrence and effects of tire wear particles in the environment – a critical review and an initial risk assessment. Environ Pollut. 2009;157(1):1-11. https://doi.org/10.1016/j.envp....
 
158.
Wang Y, Yin H, Yang Z, Su S, Hao L, Tan J et al. Assessing the brake particle emissions for sustainable transport: a review. Renew Sustain Energy Rev. 2022;167:112737. https://doi.org/10.1016/j.rser....
 
159.
Woo S-H, Kim Y, Lee S, Choi Y, Lee S. Characteristics of brake wear particle (BWP) emissions under various test driving cycles. Wear. 2021;480-481:203936. https://doi.org/10.1016/j.wear....
 
160.
Woo S-H, Jang H, Na MY, Chang HJ, Lee S. Characterization of brake particles emitted from non-asbestos organic and low-metallic brake pads under normal and harsh braking conditions. Atmos Environ. 2022;278:119089. https://doi.org/10.1016/j.atmo....
 
161.
Woo S-H, Jang H, Lee S-B, Lee S. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: an experimental analysis. Sci Total Environ. 2022;842:156961. https://doi.org/10.1016/j.scit....
 
162.
Zemlik M, Dziubek M, Pyka D, Konat Ł, Grygier D. Case study of accelerated wear of brake discs made of grey cast iron characterized by increased thermal stability. Combustion Engines 2022;190(3):45-49. https://doi.org/10.19206/CE-14....
 
163.
Zhang X, Chen P, Liu F. Review of tires wear particles emission research status. IOP Conf Ser: Earth Environ Sci. 2020;555:012062. https://doi.org/10.1088/1755-1....
 
164.
Ziółkowski A, Fuć P, Jagielski A, Bednarek M. Analysis of emissions and fuel consumption from forklifts by location of operation. Combustion Engines. 2022;189(2):30-35. https://doi.org/10.19206/CE-14....
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top