Biogas-fuelled internal combustion engines for micro-scale energy generation: a review of technologies and configurations for systems below 50 kW
More details
Hide details
1
Wydział Samochodów i Maszyn Roboczych, Politechnika Warszawska, Poland
2
Centrum Ochrony Środowiska, Instytut Transportu Samochodowego, Poland
3
Wydział Zarządzania, Politechnika Lubelska, Poland
Submission date: 2025-06-02
Final revision date: 2025-07-31
Acceptance date: 2025-08-02
Online publication date: 2025-09-25
KEYWORDS
TOPICS
ABSTRACT
The growing demand for sustainable and decentralised energy solutions drives the development of micro-scale biogas power generation systems using internal combustion engines (ICEs) as prime movers. This paper reviews the technological advances and structural configurations of ICEs designed to burn biogas in generator systems with power outputs of up to 50 kW. The study investigates the adaptation of spark-ignition and dual-fuel engines, optimisation of compression ratios, fuel delivery systems, and ignition strategies to increase efficiency and reliability. Furthermore, the impact of biogas composition on engine performance and emissions is investigated, addressing the challenges of changes in methane and pollutant content. The review provides information on recent innovations, including engine modifications to run lean and integration of advanced control systems to increase efficiency and durability. By synthesising current research and practical applications, this paper aims to guide the selection and development of optimised ICE solutions for distributed microgas power generation.
REFERENCES (78)
1.
Ahmad A, Singh A. Predictive modeling and optimization of engine characteristics with biogas–biodiesel-powered dual-fuel mode: a neural network-coupled box–Behnken design. Arab J Sci Eng. 2024;49(2):2661-2680.
https://doi.org/10.1007/s13369....
2.
Ahmed SA, Zhou S, Zhu Y, Tsegay AS, Feng Y, Ahmad N et al. Effects of pig manure and corn straw generated biogas and methane enriched biogas on performance and emission characteristics of dual fuel diesel engines. Energies. 2020;13(4):889.
https://doi.org/10.3390/en1304....
3.
Akkouche N, Loubar K, Nepveu F, Kadi MEA, Tazerout M. Micro-combined heat and power using dual fuel engine and biogas from discontinuous anaerobic digestion. Energ Convers Manage. 2020;205:112407.
https://doi.org/10.1016/j.enco....
4.
Ali S, Yan Q, Irfan M, Chen Z. Evaluating barriers on biogas technology adoption in China: the moderating role of awareness and technology understanding. Front Environ Sci. 2022;10:887084.
https://doi.org/10.3389/fenvs.....
5.
Ali S, Yan Q, Razzaq A, Khan I, Irfan M. Modeling factors of biogas technology adoption: a roadmap towards environmental sustainability and green revolution. Environ Sci Pollut Res. 2022;30(5):11838-11860.
https://doi.org/10.1007/s11356....
6.
Alrbai M, Ahmad AD, Al-Dahidi S, Abubaker AM, Al-Ghussain L, Alahmer A et al. Performance and sensitivity analysis of raw biogas combustion under homogenous charge compression ignition conditions. Energy. 2023;283:128486.
https://doi.org/10.1016/j.ener....
7.
Alstone P, Gershenson D, Kammen DM. Decentralized energy systems for clean electricity access. Nature Clim Change. 2015;5(4):305-314.
https://doi.org/10.1038/nclima....
8.
Ambarita H. Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode. Case Studies in Thermal Engineering. 2017;10:179-191.
https://doi.org/10.1016/j.csit....
9.
Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H et al. Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv. 2018;36(2):452-466.
https://doi.org/10.1016/j.biot....
10.
Barik D, Murugan S. Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode. Energy. 2014;72:760-771.
https://doi.org/10.1016/j.ener....
11.
Bertinatto R, Friedrich L, Bariccatti RA, Souza SNMD, Gurgacz F, Pazuch FA. Analysis of lubricant oil contamination and degradation and wear of a biogas-fed Otto cycle engine. Acta Sci Technol. 2017;39(4):409.
https://doi.org/10.4025/actasc....
13.
Bieniek A, Mamala J, Graba M, Prażnowski K, Śmieja M, Wereszczyński D. Application of biogas to supply the high compression ratio engine. Combustion Engines. 2019;179(4):40-46.
https://doi.org/10.19206/CE-20....
14.
Bora BJ, Saha UK. Optimisation of injection timing and compression ratio of a raw biogas powered dual fuel diesel engine. Appl Therm Eng. 2016;92:111-121.
https://doi.org/10.1016/j.appl....
15.
Bora BJ, Saha UK, Chatterjee S, Veer V. Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energ Convers Manage. 2014;87:1000-1009.
https://doi.org/10.1016/j.enco....
16.
Bouguessa R, Tarabet L, Loubar K, Belmrabet T, Tazerout M. Experimental investigation on biogas enrichment with hydrogen for improving the combustion in diesel engine operating under dual fuel mode. Int J Hydrogen Energ. 2020;45(15):9052-9063.
https://doi.org/10.1016/j.ijhy....
17.
Boussetla S, Mameri A, Hadef A. NO emission from non-premixed MILD combustion of biogas-syngas mixtures in opposed jet configuration. Int J Hydrogen Energ. 2021;46(75):37641-37655.
https://doi.org/10.1016/j.ijhy....
18.
Bragança I, Sánchez-Soberón F, Pantuzza GF, Alves A, Ratola N. Impurities in biogas: analytical strategies, occurrence, effects and removal technologies. Biomass Bioenerg. 2020;143:105878.
https://doi.org/10.1016/j.biom....
19.
Bui VG, Bui TMT, Tran VN, Huang Z, Hoang AT, Tarelko W et al. Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters. Int J Hydrogen Energ. 2023;48(18):6722-6737.
https://doi.org/10.1016/j.ijhy....
20.
Bui VG, Tu Bui TM, Ong HC, Nižetić S, Bui VH, Xuan Nguyen TT et al. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy. 2022;252:124052.
https://doi.org/10.1016/j.ener....
21.
Buivydas E, Navickas K, Venslauskas K. A life cycle assessment of methane slip in biogas upgrading based on permeable membrane technology with variable methane concentration in raw biogas. Sustainability. 2024;16(8):3323.
https://doi.org/10.3390/su1608....
22.
Bundele H, Kurien C, Varma PS, Mittal M. Experimental and computational study on the enhancement of engine characteristics by hydrogen enrichment in a biogas fuelled spark ignition engine. Int J Hydrogen Energ. 2022;47(71):30671-30686.
https://doi.org/10.1016/j.ijhy....
23.
Bundele H, Varma PS, Kurien C, Mittal M. Enhancement of low operating load limit and engine characteristics by hydrogen addition in a biogas-fueled spark-ignition engine. J Eng Gas Turb Power. 2023;145(2):021006.
https://doi.org/10.1115/1.4056....
24.
Czekała W, Gawrych K, Smurzyńska A, Mazurkiewicz J, Pawlisiak A, Chełkowski D et al. The possibility of functioning micro-scale biogas plant in selected farm. Journal of Water and Land Development. 2017;35(1):19-25.
https://doi.org/10.1515/jwld-2....
25.
Czubaszek R, Wysocka-Czubaszek A, Banaszuk P. Importance of feedstock in a small-scale agricultural biogas plant. Energies. 2022;15(20):7749.
https://doi.org/10.3390/en1520....
26.
Das AK, Padhi MR, Behera DD, Das SS. Evaluation of a diesel engine performance and emission using biogas in dual fuel mode. Mech Eng for Soc and Ind. 2024;4(2):167-176.
https://doi.org/10.31603/mesi.....
27.
Del Pópolo Grzona MV, Izurieta EM, Adrover ME, Borio DO, López E, Pedernera MN. Design studies of a pure hydrogen production plant from biogas. Int J Hydrogen Energ. 2024;52:1-10.
https://doi.org/10.1016/j.ijhy....
28.
Dev S, Stevenson D, Yousefi A, Guo H, Butler J. An experimental study on a dual-fuel generator fueled with diesel and simulated biogas. ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers 2021. V001T04A004
https://doi.org/10.1115/ICEF20....
29.
Feroskhan M, Ismail S. A review on the purification and use of biogas in compression ignition engines. Int J Automot Mech Eng. 2022;14(3):4383-4400.
https://doi.org/10.15282/ijame....
30.
Feroskhan M, Ismail S, Natarajan G, Manavalla S, Khan TMY, Khadar SDA et al. A comprehensive study of the effects of various operating parameters on a biogas-diesel dual fuel engine. Sustainability. 2023;15(2):1232.
https://doi.org/10.3390/su1502....
31.
Feroskhan M, Ismail S, Panchal SH. Study of methane enrichment in a biogas fuelled HCCI engine. Int J Hydrogen Energ. 2022;47(5):3504-3514.
https://doi.org/10.1016/j.ijhy....
32.
Feroskhan M, Thangavel V, Subramanian B, Sankaralingam RK, Ismail S, Chaudhary A. Effects of operating parameters on the performance, emission and combustion indices of a biogas fuelled HCCI engine. Fuel. 2021;298:120799.
https://doi.org/10.1016/j.fuel....
33.
Gholamian E, Mehr AS, Yari M, Carton JG. Dynamic simulation and techno-economic assessment of hydrogen utilization in dual fuel (hydrogen/biogas) micro gas turbine systems for a wastewater treatment plant. Process Saf Environ. 2023;169:220-237.
https://doi.org/10.1016/j.psep....
34.
Gupta P, Kurien C, Mittal M. Biogas (a promising bioenergy source): a critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. Int J Hydrogen Energ. 2023;48(21):7747-7769.
https://doi.org/10.1016/j.ijhy....
35.
Ha Y-H, Kumar SS. Investigating decentralized renewable energy systems under different governance approaches in Nepal and Indonesia: how does governance fail? Energy Research & Social Science. 2021;80:102214.
https://doi.org/10.1016/j.erss....
36.
Hoda A, Rahman TMR, Asrar W, Khan SA. A comparative study of natural gas and biogas combustion in a swirling flow gas turbine combustor. Combust Sci Technol. 2022;194(13):2613-2640.
https://doi.org/10.1080/001022....
37.
Hotta SK, Sahoo N, Mohanty K, Kulkarni V. Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine. Renew Energ. 2020;150:854-867.
https://doi.org/10.1016/j.rene....
38.
Jatana GS, Himabindu M, Thakur HS, Ravikrishna RV. Strategies for high efficiency and stability in biogas-fuelled small engines. Exp Therm Fluid Sci. 2014;54:189-195.
https://doi.org/10.1016/j.expt....
39.
Kapoor R, Ghosh P, Kumar M, Vijay VK. Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res. 2019;26(12):11631-11661.
https://doi.org/10.1007/s11356....
40.
Khan O, Alsaduni I, Equbal A, Parvez M, Yadav AK. Performance and emission analysis of biodiesel blends enriched with biohydrogen and biogas in internal combustion engines. Process Saf Environ. 2024;183:1013-1037.
https://doi.org/10.1016/j.psep....
41.
Khatri N, Khatri KK. Hydrogen enrichment on diesel engine with biogas in dual fuel mode. Int J Hydrogen Energ. 2020;45(11):7128-7140.
https://doi.org/10.1016/j.ijhy....
42.
Kim S, Sung T, Kim K. Thermodynamic performance analysis of a biogas-fuelled micro-gas turbine with a bottoming organic rankine cycle for sewage sludge and food waste treatment plants. Energies. 2017;10(3):275.
https://doi.org/10.3390/en1003....
43.
Kim Y, Kawahara N, Tsuboi K, Tomita E. Combustion characteristics and NOx emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine. Appl Energ. 2016;182:539-547.
https://doi.org/10.1016/j.apen....
44.
Konkol I, Cebula J, Bohdziewicz J, Piotrowski K, Sakiewicz P, Piechaczek-Wereszczyńska M et al. Mineral deposit formation in gas engines during combustion of biogas from landfills and municipal WWTP. Ecol Chem Eng S. 2020;27(3):347-356.
https://doi.org/10.2478/eces-2....
45.
Kovacs VB, Torok A, Bereczky A, Szwaja S. Biogas utilization in an internal combustion engine working in a serial hybrid propulsion system. Combustion Engines. 2012;148(1):17-24.
https://doi.org/10.19206/CE-11....
46.
Kriaučiūnas D, Pukalskas S, Rimkus A, Barta D. Analysis of the influence of CO2 concentration on a spark ignition engine fueled with biogas. Appl Sci. 2021;11(14):6379.
https://doi.org/10.3390/app111....
47.
Kriaučiūnas D, Žvirblis T, Kilikevičienė K, Kilikevičius A, Matijošius J, Rimkus A et al. Impact of simulated biogas compositions (CH4 and CO2) on vibration, sound pressure and performance of a spark ignition engine. Energies. 2021;14(21):7037.
https://doi.org/10.3390/en1421....
48.
Legrottaglie F, Mattarelli E, Rinaldini CA, Scrignoli F. Application to micro-cogeneration of an innovative dual fuel compression ignition engine running on biogas. International Journal of Thermofluids. 2021;10:100093.
https://doi.org/10.1016/j.ijft....
50.
Liu A, Fan R, Liu Q, Xi L, Zeng W. Numerical and experimental study on combustion characteristics of micro-gas turbine biogas combustor. Energies. 2022;15(21):8302.
https://doi.org/10.3390/en1521....
51.
Mahmoodi R, Yari M, Ghafouri J, Poorghasemi K. Effect of reformed biogas as a low reactivity fuel on performance and emissions of a RCCI engine with reformed biogas/diesel dual-fuel combustion. Int J Hydrogen Energ. 2021;46(30):16494-16512.
https://doi.org/10.1016/j.ijhy....
52.
Mandal A, Cho H, Chauhan BS. ANN Prediction of performance and emissions of CI engine using biogas flow variation. Energies. 2021;14(10):2910.
https://doi.org/10.3390/en1410....
53.
Mariani A, Minale M, Unich A. Use of biogas containing CH4, H2 and CO2 in controlled auto-ignition engines to reduce NOx emissions. Fuel. 2021;301:120925.
https://doi.org/10.1016/j.fuel....
54.
Moya C, Santiago R, Hospital-Benito D, Lemus J, Palomar J. Design of biogas upgrading processes based on ionic liquids. Chem Eng J. 2022;428:132103.
https://doi.org/10.1016/j.cej.....
55.
Mperejekumana P, Shen L, Zhong S, Gaballah MS, Muhirwa F. Exploring the potential of decentralized renewable energy conversion systems on water, energy, and food security in Africa. Energ Convers Manage. 2024;315:118757.
https://doi.org/10.1016/j.enco....
56.
Mukasine A, Sibomana L, Jayavel K, Nkurikiyeyezu K, Hitimana E. Maximizing biogas yield using an optimized stacking ensemble machine learning approach. Energies. 2024;17(2):364.
https://doi.org/10.3390/en1702....
57.
Nindhia TGT, McDonald M, Styles D. Greenhouse gas mitigation and rural electricity generation by a novel two-stroke biogas engine. J Clean Prod. 2021;280:124473.
https://doi.org/10.1016/j.jcle....
58.
Nyamukamba P, Mukumba P, Chikukwa ES, Makaka G. Biogas upgrading approaches with special focus on siloxane removal – a review. Energies. 2020;13(22):6088.
https://doi.org/10.3390/en1322....
59.
Porpatham E, Ramesh A, Nagalingam B. Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int J Hydrogen Energ. 2007;32(12):2057-2065.
https://doi.org/10.1016/j.ijhy....
60.
Porpatham E, Ramesh A, Nagalingam B. Effect of compression ratio on the performance and combustion of a biogas fuelled spark ignition engine. Fuel. 2012;95:247-256.
https://doi.org/10.1016/j.fuel....
61.
Rahman KA, Ramesh A. Studies on the effects of methane fraction and injection strategies in a biogas diesel common rail dual fuel engine. Fuel. 2019;236:147-165.
https://doi.org/10.1016/j.fuel....
62.
Rodero MDR, Muñoz R, González-Sánchez A, Ruiz HA, Quijano G. Membrane materials for biogas purification and upgrading: fundamentals, recent advances and challenges. Journal of Environmental Chemical Engineering. 2024;12(5):114106.
https://doi.org/10.1016/j.jece....
63.
Romagnoli F, Spaccini F, Boggia A, Paoli R, Feofilovs M, Ieviņa B et al. Microalgae cultivation in a biogas plant: environmental and economic assessment through a life cycle approach. Biomass a Bioenerg. 2024;182:107116.
https://doi.org/10.1016/j.biom....
64.
Roubaud A, Favrat D. Improving performances of a lean burn cogeneration biogas engine equipped with combustion prechambers. Fuel. 2005;84(16):2001-2007.
https://doi.org/10.1016/j.fuel....
65.
Rybak G, Kozłowski E, Król K, Rymarczyk T, Sulimierska A, Dmowski A et al. Algorithms for optimizing energy consumption for fermentation processes in biogas production. Energies. 2023;16(24):7972.
https://doi.org/10.3390/en1624....
66.
Salhi M, Berrich E, Romdhane M, Aloui F. Experimental investigation of performance and exhaust emissions of pyrolytic olive pomaces biofuels blends without and with additives fueled internal combustion engine. Handbook of Thermal Management Systems. Elsevier 2023:785-800.
https://doi.org/10.1016/B978-0....
67.
Schnidrig J, Chuat A, Terrier C, Maréchal F, Margni M. Power to the people: on the role of districts in decentralized energy systems. Energies. 2024;17(7):1718.
https://doi.org/10.3390/en1707....
69.
Soehartanto T, Fitriyanah DN, Aisyah PY. Design of ECU (electronic control unit) as biogas pressure control to micro genset. IJOE. 2021;6(3):73.
https://doi.org/10.12962/j2337....
70.
Valipour Berenjestanaki A, Kawahara N, Tsuboi K, Tomita E. Performance, emissions and end-gas autoignition characteristics of PREMIER combustion in a pilot fuel-ignited dual-fuel biogas engine with various CO2 ratios. Fuel. 2021;286:119330.
https://doi.org/10.1016/j.fuel....
71.
Vasan V, Sridharan NV, Feroskhan M, Vaithiyanathan S, Subramanian B, Tsai P-C et al. Biogas production and its utilization in internal combustion engines – a review. Process Saf Environ. 2024;186:518-539.
https://doi.org/10.1016/j.psep....
72.
Verma S, Das LM, Kaushik SC. Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energ Convers Manage. 2017;138:346-359.
https://doi.org/10.1016/j.enco....
73.
Verma S, Das LM, Kaushik SC, Tyagi SK. An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine. Int J Hydrogen Energ. 2018;43(4):2452-2468.
https://doi.org/10.1016/j.ijhy....
74.
Villarroel-Schneider J, Mainali B, Martí-Herrero J, Malmquist A, Martin A, Alejo L. Biogas based polygeneration plant options utilizing dairy farms waste: a Bolivian case. Sustainable Energy Technologies and Assessments. 2020;37:100571.
https://doi.org/10.1016/j.seta....
75.
Vindiš P, Pažek K, Prišenk J, Rozman Č. The economic efficiency of micro biogas plants: a sustainable energy solution in Slovenia – case study. Energies. 2024;17(20):5066.
https://doi.org/10.3390/en1720....
76.
Xue J, Li Y, Peppers J, Wan C, Kado NY, Green PG et al. Ultrafine particle emissions from natural gas, biogas, and biomethane combustion. Environ Sci Technol. 2018;52(22):13619-13628.
https://doi.org/10.1021/acs.es....
77.
Yamasaki Y, Kanno M, Suzuki Y, Kaneko S. Development of an engine control system using city gas and biogas fuel mixture. Appl Energ. 2013;101:465-474.
https://doi.org/10.1016/j.apen....
78.
Yimen N, Hamandjoda O, Meva’a L, Ndzana B, Nganhou J. Analyzing of a photovoltaic/wind/biogas/pumped-hydro off-grid hybrid system for rural electrification in Sub-Saharan Africa – case study of Djoundé in Northern Cameroon. Energies. 2018;11(10):2644.
https://doi.org/10.3390/en1110....