Application of 3D-printed metal pistons in internal combustion engines: advantages and challenges
More details
Hide details
1
Wydział Samochodów i Maszyn Roboczych, Politechnika Warszawska, Poland
2
Instytut Pojazdów i Maszyn Roboczych, Wydział Samochodów i Maszyn Roboczych, Poland
Submission date: 2025-05-19
Final revision date: 2025-11-25
Acceptance date: 2025-12-10
Online publication date: 2026-01-11
KEYWORDS
TOPICS
ABSTRACT
The application of 3D-printed metal pistons in internal combustion engines (ICE) presents significant advantages, including enhanced design flexibility, weight reduction, and improved thermal management. This innovative manufacturing technique enables the creation of complex geometries and tailored surface textures, contributing to better fuel efficiency and reduced emissions. Moreover, it opens new possibilities for customised piston design in advanced combustion strategies. However, challenges such as material anisotropy, surface roughness, and long-term reliability must be addressed to ensure consistent and safe performance under demanding engine conditions. Ongoing research in material science, process optimisation, and post-processing techniques is essential for overcoming these hurdles and realising the full industrial potential of 3D-printed pistons in modern ICE technology.
REFERENCES (56)
1.
Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH. Additive manufacturing: challenges, trends, and applications. Adv Mech Eng. 2019;11(2):1687814018822880.
https://doi.org/10.1177/168781....
2.
Adamou A, Costall A, Turner JWG, Jones A, Copeland C. Experimental performance and emissions of additively manufactured high-temperature combustion chambers for micro-gas turbines. Int J Engine Res. 2023;24(4):1273-1289.
https://doi.org/10.1177/146808....
3.
Andronov V, Pitrmuc Z, Zajíc J, Šotka P, Beránek L, Bock M. Conformal cooling as a support tool for eliminating local defects in high-pressure die casting series production. Prog Addit Manuf. 2025;10(2):1511-1528.
https://doi.org/10.1007/s40964....
4.
Andronov V, Šimota J, Pelikán L, Beránek L, Novák V. Analysis of strength properties of 3D printed lightweight structures made of AlSi10Mg material. IOP Conf Ser: Mater Sci Eng. 2021;1178(1):012002.
https://doi.org/10.1088/1757-8....
5.
Armstrong M, Mehrabi H, Naveed N. An overview of modern metal additive manufacturing technology. J Manuf Processes. 2022;84:1001-1029.
https://doi.org/10.1016/j.jmap....
6.
Arrivabeni EB, Tomasoni D, Giorleo L, Barbato MC. A methodology for mould conformal cooling channels optimization exploiting 3D printing. ESAFORM 2021. 2021.
https://doi.org/10.25518/esafo....
7.
Bian P, Shi J, Liu Y, Xie Y. Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel. Optics & Laser Technology. 2020;132:106477.
https://doi.org/10.1016/j.optl....
8.
Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E et al. Metal additive manufacturing in aerospace: a review. Materials & Design. 2021;209:110008.
https://doi.org/10.1016/j.matd....
9.
Cheng L, Liang X, Bai J, Chen Q, Lemon J, To A. On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing. Additive Manufacturing. 2019;27:290-304.
https://doi.org/10.1016/j.addm....
10.
Dan C, Cui Y, Wu Y, Chen Z, Liu H, Ji G et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat Mater. 2023;22(10):1182-1188.
https://doi.org/10.1038/s41563....
11.
DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112-224.
https://doi.org/10.1016/j.pmat....
12.
Despeisse M, Ford S. The role of additive manufacturing in improving resource efficiency and sustainability. In: Umeda S, Nakano M, Mizuyama H, Hibino H, Kiritsis D, Von Cieminski G (eds). Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth. Cham: Springer International Publishing; 2015:129-136.
https://doi.org/10.1007/978-3-....
13.
Diniță A, Neacșa A, Portoacă AI, Tănase M, Ilinca CN, Ramadan IN. Additive manufacturing post-processing treatments, a review with emphasis on mechanical characteristics. Materials. 2023;16(13):4610.
https://doi.org/10.3390/ma1613....
15.
Domfang Ngnekou JN, Nadot Y, Henaff G, Nicolai J, Kan WH, Cairney JM et al. Fatigue properties of AlSi10Mg produced by additive layer manufacturing. Int J Fatigue. 2019;119:160-172.
https://doi.org/10.1016/j.ijfa....
17.
Eriksson M, Lervåg M, Sørensen C, Robertstad A, Brønstad BM, Nyhus B et al. Additive manufacture of superduplex stainless steel using WAAM. MATEC Web Conf. 2018;188:03014.
https://doi.org/10.1051/matecc....
18.
Feng S, Kamat AM, Pei Y. Design and fabrication of conformal cooling channels in molds: review and progress updates. Int J Heat and Mass Transf. 2021;171:121082.
https://doi.org/10.1016/j.ijhe....
19.
Ferro P, Fabrizi A, Berto F, Savio G, Meneghello R, Rosso S. Defects as a root cause of fatigue weakening of additively manufactured AlSi10Mg components. Theor Appl Fract Mech. 2020;108:102611.
https://doi.org/10.1016/j.tafm....
20.
Fracchia E, Gobber FS, Rosso M, Actis Grande M, Bidulská J, Bidulský R. Junction characterization in a functionally graded aluminum part. Materials. 2019;12(21):3475.
https://doi.org/10.3390/ma1221....
21.
Garcia CR, Rumpf RC, Tsang HH, Barton JH. Effects of extreme surface roughness on 3D printed horn antenna. Electron Lett. 2013;49(12):734-736.
https://doi.org/10.1049/el.201....
22.
Gray J, Depcik C, Sietins JM, Kudzal A, Rogers R, Cho K. Production of the cylinder head and crankcase of a small internal combustion engine using metal laser powder bed fusion. J Manuf Process. 2023;97:100-114.
https://doi.org/10.1016/j.jmap....
24.
Heitzman RC. Design of an articulated piston for Caterpillar® 3500 engines utilizing computer-aided design and analysis. J Eng Gas Turbines Power. 1990;112(3):276-279.
https://doi.org/10.1115/1.2906....
26.
Jared BH, Aguilo MA, Beghini LL, Boyce BL, Clark BW, Cook A et al. Additive manufacturing: toward holistic design. Scr Mater. 2017;135:141-147.
https://doi.org/10.1016/j.scri....
27.
Javaid M, Haleem A, Singh RP, Suman R, Rab S. Role of additive manufacturing applications towards environmental sustainability. Adv Ind Eng Polym Res. 2021;4(4):312-322.
https://doi.org/10.1016/j.aiep....
28.
Jiménez M, Romero L, Domínguez IA, Espinosa MDM, Domínguez M. Additive manufacturing technologies: an overview about 3D printing methods and future prospects. Complexity. 2019;2019(1):9656938.
https://doi.org/10.1155/2019/9....
29.
Khan N, Riccio A. A Systematic review of design for additive manufacturing of aerospace lattice structures: current trends and future directions. Prog Aerosp Sci. 2024;149:101021.
https://doi.org/10.1016/j.paer....
30.
Kolganov KА, Mikryukov IV, Markov АS. Development of a technology for the manufacturing of parts/components of an internal combustion engine involving additive manufacturing methods. Silovoe i energeticheskoe oborudovanie Avtonomnye sistemy. 2019;2(3):166-184.
https://doi.org/10.32464/2618-....
31.
Laleh M, Sadeghi E, Revilla RI, Chao Q, Haghdadi N, Hughes AE et al. Heat treatment for metal additive manufacturing. Prog Mater Sci. 2023;133:101051.
https://doi.org/10.1016/j.pmat....
32.
Liu H, Ma J, Tong L, Ma G, Zheng Z, Yao M. Investigation on the potential of high efficiency for internal combustion engines. Energies. 2018;11(3):513.
https://doi.org/10.3390/en1103....
33.
Liu Y, Shi J, Wang Y. Evolution, control, and mitigation of residual stresses in additively manufactured metallic materials: a review. Adv Eng Mater. 2023;25(22):2300489.
https://doi.org/10.1002/adem.2....
34.
Maleki E, Shamsaei N. A comprehensive study on the effects of surface post-processing on fatigue performance of additively manufactured AlSi10Mg: an augmented machine learning perspective on experimental observations. Additive Manufacturing. 2024;86:104179.
https://doi.org/10.1016/j.addm....
35.
Martina F, Roy MJ, Szost BA, Terzi S, Colegrove PA, Williams SW et al. Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti-6Al-4V components. Mat Sci Technol. 2016;32(14):1439-1448.
https://doi.org/10.1080/026708....
36.
Mattarelli E, Fontanesi S, Rinaldini C, Valentino G, Iannuzzi S, Severi E et al. Combustion optimization of a marine DI diesel engine. SAE Technical Paper 2013-24-0020. 2013.
https://doi.org/10.4271/2013-2....
37.
Najibi A, Alizadeh P. Nonlinear transient thermal stress investigation of 2D-FG porosity long cylinder sector. Commun Nonlinear Sci Numer Simul. 2025;142:108558.
https://doi.org/10.1016/j.cnsn....
38.
Panda BK, Sahoo S. Numerical simulation of residual stress in laser based additive manufacturing process. IOP Conf Ser: Mater Sci Eng. 2018;338:012030.
https://doi.org/10.1088/1757-8....
39.
Pfeifer A, Gericke M, Heinze T. Synthesis and characterization of novel water-soluble 6-deoxy-6-(2-amino-2-(hydroxymethyl)propane-1,3-diol)cellulose derivatives. Adv Ind Eng Poly Res. 2020;3(2):77-82.
https://doi.org/10.1016/j.aiep....
40.
Romano S, Brückner-Foit A, Brandão A, Gumpinger J, Ghidini T, Beretta S. Fatigue properties of AlSi10Mg obtained by additive manufacturing: defect-based modelling and prediction of fatigue strength. Eng Fract Mech. 2018;187:165-189.
https://doi.org/10.1016/j.engf....
41.
Schoeffmann W, Knollmayr C, Mehrabi K. Additive manufactured components in engine and fuel cell applications – from prototyping to dedicated production design. Euro PM2024 Proceedings. EPMA 2024.
https://doi.org/10.59499/EP246....
42.
Selvaraj G, Yessian S, Ramalingam S, Dharani Kumar S, Gopal G, Sharma S et al. Investigation on topology-optimized compressor piston by metal additive manufacturing technique: analytical and numeric computational modeling using finite element analysis in ANSYS. Open Physics. 2023;21(1):20220259.
https://doi.org/10.1515/phys-2....
43.
Stojanovic B, Glisovic J. Automotive engine materials. In: Reference Module in Materials Science and Materials Engineering. Elsevier 2016.
https://doi.org/10.1016/B978-0....
44.
Tian X, Zhao Z, Wang H, Liu X, Song X. Progresses on the additive manufacturing of functionally graded metallic materials. J Alloys Compd. 2023;960:170687.
https://doi.org/10.1016/j.jall....
45.
Toledo Valera JD, Zavos A, Nikolakopoulos PG. Thermal and structural improvements of a motorcycle piston using a fully coupled thermo-mechanical FEM simulation. Int J Engine Res. 2025;26(7):973-983.
https://doi.org/10.1177/146808....
46.
Torregrosa AJ, Olmeda P, Degraeuwe B, Reyes M. A concise wall temperature model for DI diesel engines. Appl Therm Engineering. 2006;26(11–12):1320-1327.
https://doi.org/10.1016/j.appl....
47.
Velugula R, Thiruvallur Loganathan B, Varadhaiyengar L, Asvathanarayanan R, Mittal M. An analysis of mechanical and thermal stresses, temperature and displacement within the transparent cylinder and piston top of a small direct-injection spark-ignition optical engine. Energies. 2023;16(21):7400.
https://doi.org/10.3390/en1621....
48.
Wasti S, Adhikari S. Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front Chem. 2020;8:315.
https://doi.org/10.3389/fchem.....
49.
Wei HL, Mukherjee T, Zhang W, Zuback JS, Knapp GL, De A et al. Mechanistic models for additive manufacturing of metallic components. Prog Mater Sci. 2021;116:100703.
https://doi.org/10.1016/j.pmat....
50.
Weissbach R, Praegla PM, Wall WA, Hart AJ, Meier C. Exploration of improved, roller-based spreading strategies for cohesive powders in additive manufacturing via coupled DEM-FEM simulations. Powder Technol. 2024;443:119956.
https://doi.org/10.1016/j.powt....
51.
Zhang J, Li J, Wu S, Zhang W, Sun J, Qian G. High-cycle and very-high-cycle fatigue lifetime prediction of additively manufactured AlSi10Mg via crystal plasticity finite element method. Int J Fatigue. 2022;155:106577.
https://doi.org/10.1016/j.ijfa....
52.
Zhao L, Santos Macías JG, Dolimont A, Simar A, Rivière-Lorphèvre E. Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing. Additive Manufacturing. 2020;36:101499.
https://doi.org/10.1016/j.addm....
53.
Zhou L, Miller J, Vezza J, Mayster M, Raffay M, Justice Q et al. Additive manufacturing: a comprehensive review. Sensors. 2024;24(9):2668.
https://doi.org/10.3390/s24092....
54.
Koenigsegg Automotive AB. Jesko Engine Development Report. 2021.
55.
GE Additive & NASA. Advancing Aerospace with Additive Manufacturing. 2022.
56.
Mahle Powertrain. Pistons Manufactured with 3D Printing for Formula 1 Applications. 2020.