KEYWORDS
TOPICS
ABSTRACT
The article discusses the concept of using a hydrogen fuel cell as the primary energy source for a rail vehicle's propulsion system. The authors presented the idea of a stationary test stand for commissioning and testing of the hydrogen fuel cell, cooperating with a battery energy storage and a traction inverter. At the same time, a modular installation of key components of the propulsion system was proposed, which allows flexible adaptation to different types of rail vehicles. Particular attention was paid to analysing the potential of the above solution for easy application to existing vehicles. The described test stand allows not only testing of hydrogen propulsion control algorithms, but also lays the foundation for the development of a complete propulsion management system for rail vehicles, supporting the development of modern, environmentally friendly transportation solutions.
REFERENCES (51)
1.
Awan A, Alnour M, Jahanger A, Chukwuma OJ. Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technol Soc. 2022;71:102128. https://doi.org/10.1016/j.tech....
 
2.
Bajerlein M, Rymaniak L. The reduction of fuel consumption on the example of ecological hybrid buses. Appl Mech Mater. 2014;518:96-101. https://doi.org/10.4028/www.sc....
 
3.
Barbosa FC. Hybrid rail technology review: an intermediate pathway for electrifying. American Society of Mechanical Engineers Digital Collection. 2021. https://doi.org/10.1115/JRC202....
 
4.
BeHydro. Dual fuel and 100% hydrogen engines. BeHydro. https://www.behydro.com/ (accessed on 28.01.2025).
 
5.
Collins P. Irish Rail diesel locomotive to be converted to H2 ICE. Hydrogen Europe. September 15, 2023 https://hydrogeneurope.eu (accessed on 28.01.2025).
 
6.
Dahham RY, Wei H, Pan J. Improving thermal efficiency of internal combustion engines: Recent Progress and Remaining Challenges. Energies. 2022;15(17):6222. https://doi.org/10.3390/en1517....
 
7.
D’Alvia L, Gagliardi G, Apa L, Cava C, Rizzuto E, Borello D et al. Scaled test bench for the measurement of a hybrid full-electric powertrain efficiency. Meas Sens. 2024:101433. https://doi.org/10.1016/j.meas....
 
8.
Daszkiewicz P, Kurc B, Pigłowska M, Andrzejewski M. Fuel cells based on natural polysaccharides for rail vehicle application. Energies. 2021;14(4):1144. https://doi.org/10.3390/en1404....
 
9.
Deng K, Fang T, Feng H, Peng H, Löwenstein L, Hameyer K. Hierarchical eco-driving and energy management control for hydrogen powered hybrid trains. Energy Convers Manag. 2022;264:115735. https://doi.org/10.1016/j.enco....
 
10.
Depczyński WP, Marchenko A, Mishchenko S, Mishchenko M. The effect of hydrogen addition to traditional petrol engine fuel in a hybrid power plant on its environmental performance and fuel efficiency. Combustion Engines. 2025;200(1):87-94. https://doi.org/10.19206/CE-19....
 
11.
D’Ovidio G, Ometto A, Valentini O. A novel predictive power flow control strategy for hydrogen city rail train. Int J Hydrog Energy. 2020;45(7):4922-4931. https://doi.org/10.1016/j.ijhy....
 
12.
Durkin K, Khanafer A, Liseau P, Stjernström-Eriksson A, Svahn A, Tobiasson L et al. Hydrogen-powered vehicles: comparing the powertrain efficiency and sustainability of fuel cell versus internal combustion engine cars. Energies. 2024;17(5):1085. https://doi.org/10.3390/en1705....
 
13.
Durzyński Z. Hydrogen-powered drives of the rail vehicles (part 1). Rail Vehicles/Pojazdy Szynowe. 2021;2021(2):29-40. https://doi.org/10.53502/RAIL-....
 
14.
Durzyński Z. Hydrogen-powered drives of the rail vehicles (part 2). Rail Vehicles/Pojazdy Szynowe. 2021;2021(3):1-11. https://doi.org/10.53502/RAIL-....
 
15.
Dziubak T, Ślęzak M. Characteristics of pollutants emitted by motor vehicles and their impact on the environment and engine operation. Combustion Engines. 2025;200(1):37-55. https://doi.org/10.19206/CE-19....
 
16.
Ehrhart BD, Klebanoff LE, Mohmand JA, Markt C. Study of hydrogen fuel cell technology for rail propulsion and review of relevant industry standards. 2021. https://rosap.ntl.bts.gov (accessed on 16.03.2022).
 
17.
European Commission. The European Green Deal. July 14, 2021. https://commission.europa.eu (accessed on 27.01.2025).
 
18.
Farinha J, Silva LM, Matlock J, Afonso F, Suleman A. Hydrogen fuel cell integration and testing in a hybrid-electric propulsion rig. Int J Hydrog Energy. 2023;48(97):38473-38483. https://doi.org/10.1016/j.ijhy....
 
19.
Fragiacomo P, Piraino F, Genovese M, Flaccomio Nardi Dei L, Donati D, Migliarese Caputi MV et al. Sizing and performance analysis of hydrogen- and battery-based powertrains, integrated into a passenger train for a regional track, located in Calabria (Italy). Energies. 2022;15(16):6004. https://doi.org/10.3390/en1516....
 
20.
Gallas D, Stobnicki P. Adoption of modern hydrogen technologies in rail transport. J Ecol Eng. 2022;23(3):84-91. https://doi.org/10.12911/22998....
 
21.
Graf T, Fonk R, Schröter J, Hoenicke P, Bauer C, Kallo J et al. Investigation of a fuel cell hybrid system with a new modular test bench approach for all electric hybrid power train systems. J Energy Storage. 2022;56:105999. https://doi.org/10.1016/j.est.....
 
22.
Heuschmann A, Vervoort J, Schalk K, Denecke N. Commissioning and first operation of the hybrid power system “Hydrogen lab bremerhaven.” IET Conf Proc. 2024;2024(2):158-163. https://doi.org/10.1049/icp.20....
 
23.
Hoffrichter A, Fisher P, Tutcher J, Hillmansen S, Roberts C. Performance evaluation of the hydrogen-powered prototype locomotive ‘Hydrogen pioneer.’ J Power Sources. 2014;250:120-127. https://doi.org/10.1016/j.jpow....
 
24.
Kałuża A. General statistics of diesel engines’ idle time: shunting locomotives in industrial sidings in Poland 2009…2013. Transp Res Part Transp Environ. 2016;49:82-93. https://doi.org/10.1016/j.trd.....
 
25.
Kałuża A, Kucharski R. Locomotive diesel engine idle time distributions: case studies from Poland, 2009–2013. Transp Res Part Transp Environ. 2018;62:524-535. https://doi.org/10.1016/j.trd.....
 
26.
Leach F, Kalghatgi G, Stone R, Miles P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp Eng. 2020;1:100005. https://doi.org/10.1016/j.tren....
 
27.
Logan KG, Nelson JD, McLellan BC, Hastings A. Electric and hydrogen rail: potential contribution to net zero in the UK. Transp Res Part Transp Environ. 2020;87:102523. https://doi.org/10.1016/j.trd.....
 
28.
Martini V, Mocera F, Somà A. Design and experimental validation of a scaled test bench for the emulation of a hybrid fuel cell powertrain for agricultural tractors. Appl Sci. 2023;13(15):8582. https://doi.org/10.3390/app131....
 
29.
Nqodi A, Mosetlhe TC, Yusuff AA. Advances in hydrogen-powered trains: a brief report. Energies. 2023;16(18):6715. https://doi.org/10.3390/en1618....
 
30.
Oklahoma Railway Museum. BNSF Railway Hydrogen Test Locomotive Donated to Oklahoma Railway Museum. Oklahoma Railway Museum. August 21, 2023. (accessed on 27.01.2025). https://oklahomarailwaymuseum.....
 
31.
OPEC. World Oil Outlook 2013. Organization of the Petroleum Exploring Countries.
 
32.
Ozbek E, Yalin G, Karaoglan MU, Ekici S, Colpan CO, Karakoc TH. Architecture design and performance analysis of a hybrid hydrogen fuel cell system for unmanned aerial vehicle. Int J Hydrog Energy. 2021;46(30):16453-16464. https://doi.org/10.1016/j.ijhy....
 
33.
Peng H, Chen Z, Deng K, Dirkes S, Ünlübayir C, Thul A et al. A comparison of various universally applicable power distribution strategies for fuel cell hybrid trains utilizing component modeling at different levels of detail: From simulation to test bench measurement. eTransportation. 2021;9:100120. https://doi.org/10.1016/j.etra....
 
34.
Pielecha I, Dimitrov R, Mihaylov V. Energy flow analysis based on a simulated drive of a hybrid locomotive powered by fuel cells. Rail Vehicles/Pojazdy Szynowe. 2022;2022(1-2):68-76. https://doi.org/10.53502/RAIL-....
 
35.
Pielecha I, Szwajca F, Skobiej K, Pielecha J, Merkisz J, Cieślik W. Analysis on monofuel: methane and hydrogen in passive TJI engine using center of combustion and lambda-value control. Int J Hydrog Energy. 2024;83:1170-1183. https://doi.org/10.1016/j.ijhy....
 
36.
Piraino F, Genovese M, Fragiacomo P. Towards a new mobility concept for regional trains and hydrogen infrastructure. Energy Convers Manag. 2021;228:113650. https://doi.org/10.1016/j.enco....
 
37.
Puzdrowska P. Diagnosis of marine internal combustion engines by means of rapidly variable temperature and composition of exhaust gas as an alternative or support for currently used diagnostic methods. Combustion Engines. 2025;200(1):19-30. https://doi.org/10.19206/CE-19....
 
38.
Radziszewski P, Cierniewski M, Stachowiak D. Analiza przepływu energii w pojeździe szynowym zasilanym wodorowym ogniwem paliwowym. Przegląd Elektrotechniczny. 2025;1(1):285-289. https://doi.org/10.15199/48.20....
 
39.
Rahman SMA, Masjuki HH, Kalam MA, Abedin MJ, Sanjid A, Sajjad H. Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – a review. Energy Convers Manag. 2013;74:171-182. https://doi.org/10.1016/j.enco....
 
40.
Rubio S, Nieto B, Martín J, Böhm M. Hydrogen refuelling and storage requirements for rail vehicles. Published online 2021.
 
41.
Shadidi B, Najafi G, Yusaf T. A review of hydrogen as a fuel in internal combustion engines. Energies. 2021;14(19):6209. https://doi.org/10.3390/en1419....
 
42.
Siedlecki M, Szymlet N, Fuć P, Kurc B. Analysis of the possibilities of reduction of exhaust emissions from a farm tractor by retrofitting exhaust aftertreatment. Energies. 2022;15(21):7963. https://doi.org/10.3390/en1521....
 
43.
Skobiej K. A review of hydrogen combustion and its impact on engine performance and emissions. Combustion Engines. 2025;200(1):64-70. https://doi.org/10.19206/CE-19....
 
44.
Sokolnicka-Popis B, Szymlet N, Siedlecki M, Gallas D. The impact of particulate filter substrate type on the gaseous exhaust components emission. Combustion Engines. 2020;183(4):58-62. https://doi.org/10.19206/CE-20....
 
45.
Sun Y, Anwar M, Hassan NMS, Spiryagin M, Cole C. A review of hydrogen technologies and engineering solutions for railway vehicle design and operations. Railw Eng Sci. 2021;29(3):212-232. https://doi.org/10.1007/s40534....
 
46.
Trattner A, Klell M, Radner F. Sustainable hydrogen society – Vision, findings and development of a hydrogen economy using the example of Austria. Int J Hydrog Energy. 2022;47(4):2059-2079. https://doi.org/10.1016/j.ijhy....
 
47.
Urbański P, Michalak P, Gallas D, Cierniewski M, Bajerlein M, Radziszewski P. Auxiliary rail vehicles – characteristics of the polish rolling stock for special purpose works based on european vehicle number (EVN). Rail Vehicles/Pojazdy Szynowe. 2024;2024(1-2):59-65. https://doi.org/10.53502/RAIL-....
 
48.
Urząd Transportu Kolejowego. Sprawozdanie z funkcjonowania rynku transportu kolejowego w 2023 r. Urząd Transportu Kolejowego. 2024. https://utk.gov.pl (accessed on 3.12.2024).
 
49.
Walters M, Sehr A, Dirkes S. Fuel cell systems for rail applications: development trends and challenges. Liebl J, (ed.). Der Antrieb von morgen 2020. Proceedings. Springer Fachmedien; 2021:216-234. https://doi.org/10.1007/978-3-....
 
50.
Wróblewski P, Drożdż W, Lewicki W, Dowejko J. Total cost of ownership and its potential consequences for the development of the hydrogen fuel cell powered vehicle market in Poland. Energies. 2021;14(8):2131. https://doi.org/10.3390/en1408....
 
51.
Xinqun G, Dou D, Winsor R. Non-road diesel engine emissions and technology options for meeting them. American Society of Agricultural and Biological Engineers. 2010.
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top