KEYWORDS
TOPICS
ABSTRACT
Multi-fuel systems powered by fuels, including alternative fuels in turbine engines offer a modern approach to the development of this segment of devices for use in solutions such as vehicle drive systems, guaranteed power supply systems or sustainable energy development. Thanks to the ability to operate on various fuels, such as biofuels, hydrogen, natural gas or synthetic fuels, these engines enable greater operational flexibility and additionally reduce the emission of harmful substances. The introduction of alternative fuels allows for the reduction of CO2, NOx and particulate emissions, which is of significant importance in terms of the applicable exhaust emission standards and reducing exposure to air pollution. Multi-fuel turbine engines, despite the need for technological modifications and optimization of combustion processes, are becoming a key element in the aviation, energy and transport industries, supporting the transition to more ecological and efficient energy sources.
REFERENCES (45)
1.
Al-Breiki M, Yusuf B. Comparative life cycle assessment of sustainable energy carriers including production, storage, overseas transport and utilization. J Clean Prod. 2021;279:123481. https://doi.org/10.1016/j.jcle....
 
2.
Alekseenko SV, Anufriev IS, Dekterev AA, Shadrin EY, Kuznetsov VA, Sharypov OV. Investigation of transfer processes in swirling flows in application to vortex furnaces for coal fuel. Int J Therm Sci. 2021;161:106715. https://doi.org/10.1016/j.ijth....
 
3.
Algayyim SJM, Saleh K, Wandel AP, Fattah IMR, Yusaf T, Alrazen HA. Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: a review. Fuel. 2024;362:130844. https://doi.org/10.1016/j.fuel....
 
4.
Alnaeli M, Alnajideen M, Navaratne R, Shi H. High-temperature materials for complex components in ammonia/hydrogen gas turbines: a critical review. Energies. 2023;16(19):6973. https://doi.org/10.3390/en1619....
 
5.
Banihabib R, Lingstädt T, Wersland M, Kutne P, Assadi M. Development and testing of a 100 kW fuel-flexible micro gas turbine running on 100% hydrogen. Int J Hydrogen Energy. 2024;49:92-111. https://doi.org/10.1016/j.ijhy....
 
6.
Brodzik L. Stand characteristics of the GTM 400 MOD turbojet engine. Technical Sciences. 2024;27:105-112. https://doi.org/10.31648/ts.10....
 
7.
Brzeżański M, Rodak Ł Influence of the method of creating a hydrogen-air mixture on the emission of nitrogen oxides in a spark-ignition engine. Combustion Engines. 2019;178(3):224-227. https://doi.org/10.19206/CE-20....
 
8.
Converge CFD Software. https://convergecfd.com/produc... (accessed 16.01.2025).
 
9.
Depczyński WP, Marchenko A, Mishchenko S, Mishchenko M. The effect of hydrogen addition to traditional petrol engine fuel in a hybrid power plant on its environmental performance and fuel efficiency. Combustion Engines. 2025;200(1):87-94. https://doi.org/10.19206/CE-19....
 
10.
Dimitriou P, Kumar M, Tsujimura T, Suzuki Y. Combustion and emission characteristics of a hydrogen-diesel dual-fuel engine. Int J Hydrogen Energ. 2018;43(29):13605-13617. https://doi.org/10.1016/j.ijhy....
 
11.
Ergen G. Comprehensive analysis of the effects of alternative fuels on diesel engine performance combustion and exhaust emissions: role of biodiesel, diethyl ether, and EGR. Science and Engineering Progress. 2024;47:102307. https://doi.org/10.1016/j.tsep....
 
12.
Fąfara JM, Modliński N. Numerical study of internal flue gas recirculation system applied to methane-hydrogen powered gas microturbine combustor. Combustion Engines. 2023;192(1):63-77. https://doi.org/10.19206/CE-15....
 
13.
Gieras M. Komory spalania silników turbinowych (in Polish). Wydawnictwo Politechniki Warszawskiej. Warsaw 2010.
 
14.
Gieras M. Miniaturowe silniki odrzutowe (in Polish). Oficyna Wydawnicza Politechniki Warszawskiej. Warsaw 2016.
 
15.
Glaude PA, Fournet R, Bounaceur R, Molière M. DME as a potential alternative fuel for gas turbines: A numerical approach to combustion and oxidation kinetics. ASME. 2011;1:649-658. https://doi.org/10.1115/GT2011....
 
16.
Gunasekar P, Subramanian V, Gokulnath R. Effect of hydrogen addition on exergetic performance of gas turbine engine. Aircr Eng Aerosp Tec. 2019;92(2):0002-2667. https://doi.org/10.1108/AEAT-0....
 
17.
Hernández JJ, Cova-Bonillo A, Ramos A, Wu H, Rodríguez-Fernández J. Autoignition of sustainable fuels under dual operation with H2-carriers in a constant volume combustion chamber. Fuel 2023;339:127487. https://doi.org/10.1016/j.fuel....
 
18.
Kanchiralla FM, Brynolf S, Malmgren E, Hansson J. Life-cycle assessment and costing of fuels and propulsion systems in future fossil-free shipping. Environ Sci Technol. 2022;56:12517-12531. https://pubs.acs.org/doi/10.10....
 
19.
Lefebvre AH, Ballal DR Gas turbine combustion. CRC Press. 2010;557:9780429141041. https://doi.org/10.1201/978142....
 
20.
Liu J, Zhao W, Zhang X, Ji Q, Ma H, Sun P et al. Optimizing combustion and emissions in natural gas/diesel dual-fuel engine with pilot injection strategy. Thermal Science and Engineering Progress. 2024;48:102418. https://doi.org/10.1016/j.tsep....
 
21.
Locke J, Kim W, Smith L, Snyder T Operation of FT4000 single nozzle combustor with high hydrogen. ASME. 2024;V03AT04A003:GT2024-121321. https://doi.org/10.1115/GT2024....
 
22.
Maciorowski D, Ludwiczak A, Kozakiewicz A. Hydrogen, the future of aviation. Combustion Engines. 2024;197(2):126-131. https://doi.org/10.19206/CE-17....
 
23.
Mathiyalagan SM, Khot M, Subramanian S. Computational modeling of hydrogen and hydrogen-methane fuel combustors for gas turbine engine applications. ASME Turbo Expo. 2023;GT2023-104021. https://doi.org/10.1115/GT2023....
 
24.
Matla J Possible applications of prechambers in hydrogen internal combustion engines. Combustion Engines. 2022;191(4):77-82. https://doi.org/10.19206/CE-14....
 
25.
Matla J, Kaźmierczak A, Haller P, Trocki M. Hydrogen as a fuel for spark ignition combustion engines – state of knowledge and concept. Combustion Engines. 2024;196(1):73-79. https://doi.org/10.19206/CE-17....
 
26.
Park J, Shin J, Park S, Lee S The effect of heterogeneous natural gas-hydrogen input into f-class gas turbine combustor as a combustion optimization method. ASME. 2024;V002T03A028. https://doi.org/10.1115/GT2024....
 
27.
Perez V. Natural gas cleanliness. Siemens Energy. https://www.siemens-energy.com... (accessed 16 Jan 2025).
 
28.
Przysowa R, Grundas D, Gawron B, Zieliński K. Reducing environmental impact of jet engines by hydrogen co-combustion. J Phys Conf Ser. 2024;2716(1):012010. https://doi.org/10.1088/1742-6....
 
29.
Rao AG, Yeshayahou L. A new combustion methodology for low emission gas turbine engines. 8th International Symposium on High Temperature Air Combustion and Gasification. 2010;177-185.
 
30.
Razvan N, Isvoranu D. Hydrogen-fuel operation for gas turbine following a GE90 engine simulation. 2023. https://doi.org/10.13140/RG.2.....
 
31.
Rolls-Royce Ltd. The jet engine. Rolls-Royce. 2005;0902121235.
 
32.
Serbin S, Burunsuz K, Chen D. Investigation of the characteristics of a gas turbine combustion chamber with steam injection operating on hydrogen-containing mixtures and hydrogen. International Journal of Chemical Engineering. 2022;(4):1-12. https://doi.org/10.1155/2022/9....
 
33.
Serbin S, Radchenko M, Pavlenko A, Burunsuz K. Improving ecological efficiency of gas turbine power system by combusting hydrogen and hydrogen-natural gas mixtures. Energies. 2023;16(9):3618. https://doi.org/10.3390/en1609....
 
34.
Stylianidis N, Azimov U. Reduced chemical kinetics mechanism for modelling of n-Heptane/syngas combustion with NOx formation in a micro-pilot ignited dual fuel engine. Fuel. 2024;362:130461. https://doi.org/10.1016/j.fuel....
 
35.
Sutkowski M, Mareczek M. Operational experience and new developments for industrial gas engines fuelled with hydrogen fuels. Combustion Engines. 2024;197(2):146-151. https://doi.org/10.19206/CE-18....
 
36.
Szczeciński S. Prace Instytutu Lotnictwa: Zagadnienia napędów lotniczych (in Polish). Wydawnictwa Naukowe Instytutu Lotnictwa. 2009;199:0509-6669.
 
37.
Szwajca F, Gawrysiak C, Pielecha I. Effects of passive pre-chamber jet ignition on knock combustion at hydrogen engine. Combustion Engines. 2024;198(3):110-122. https://doi.org/10.19206/CE-18....
 
38.
Tarnawski P. The hybrid concept of turboshaft engine working according to Humphrey cycle dedicated to variety power demand – CFD analysis. Combustion Engines. 2023;193(2):129-136. https://doi.org/10.19206/CE-16....
 
39.
Teoh YH, How HG, Le TD, Nguyen HT, Loo DL, Rashid T. A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel. 2022;333(2):126525. https://doi.org/10.1016/j.fuel....
 
40.
Tomos BAD, Stamford L, Welfle A, Larkin A. Decarbonising international shipping – a life cycle perspective on alternative fuel options. Energ Convers Manage. 2024;299:117848. https://doi.org/10.1016/j.enco....
 
41.
Trombley G, Toulson E. A fuel-focused review of pre-chamber initiated combustion. Energ Convers Manage. 2023;298:117765. https://doi.org/10.1016/j.enco....
 
42.
Wang L, Hong C, Li X, Yang Z, Guo S, Li Q. Review on blended hydrogen-fuel internal combustion engines: a case study for China. Energy Reports. 2022;8:6480-6498. https://doi.org/10.1016/j.egyr....
 
43.
Xu L, Xu S, Lu X, Jia M, Bai XS. Large eddy simulation of spray and combustion characteristics of biodiesel and biodiesel/butanol blend fuels in internal combustion engines. Applications in Energy and Combustion Science. 2023;16:100197. https://doi.org/10.1016/j.jaec....
 
44.
Zajkowski K, Siwek K, Karpiński W. Usage of unconventional technology of power in modern vehicles. Instytut Naukowo-Wydawniczy "SPATIUM". 2016;17(8):341-345.
 
45.
Spalanie w Napędach Lotniczych. Ćwiczenie 2 – Stechiometria spalania (in Polish). Zintegrowany Program Rozwoju Politechniki Wrocławskiej. https://www.scribd.com/documen... (accessed 16.01.2025).
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top