Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Poland
2
Faculty of Engineering Science, John Paul II University in Biała Podlaska, Poland
These authors had equal contribution to this work
Submission date: 2025-05-16
Final revision date: 2025-09-08
Acceptance date: 2025-09-16
Online publication date: 2025-10-07
Corresponding author
Paweł Magryta
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, ul. Nadbystrzycka 36 / 710, 20-618, Lublin, Poland
This study presents an experimental investigation into the acoustic emissions of a Wankel rotary engine fueled by three distinct injection strategies: unleaded gasoline (E10), hydrogen with water addition (H2W), and pure hydrogen (H2). Measurements were carried out on an engine test bench under steady-state operating conditions. The analysis encompassed both sound pressure levels and frequency-domain characteristics of the acoustic signals. A microphone array in conjunction with CAE Noise Inspector software was used to capture and analyse noise emissions originating from the combustion chamber. The results revealed distinct variations in acoustic behaviour depending on the fuel type. Notably, the engine powered by pure hydrogen exhibited the highest amplitude of emitted combustion noise, potentially attributable to knocking combustion phenomena. The study underscores that fuel selection has a significant impact on the acoustic signature of the Wankel engine. Furthermore, the adopted measurement methodology proved effective in identifying combustion-related sound patterns and provides a foundation for future optimisation of rotary engines operating on alternative fuels.
REFERENCES(32)
1.
Amrouche F, Erickson P, Park J, Varnhagen S. An experimental investigation of hydrogen-enriched gasoline in a Wankel rotary engine. Int J Hydrogen Energy. 2014;39:8525-8534. https://doi.org/10.1016/j.ijhy....
Amrouche F, Erickson PA, Varnhagen S. Extending the lean operation limit of a gasoline Wankel rotary engine using hydrogen enrichment. Int J Hydrogen Energy. 2016;41:14261-14271. https://doi.org/10.1016/j.ijhy....
Biały M, Wendeker M, Gęca M. Identyfikacja spalania stukowego w silniku Wankla zasilanym paliwem wodorowym (in Polish). Autobusy, Technika, Eksploatacja, Systemy transpotowe 2012;4.
Brzeżański M, Mareczek M, Noga M. Conversion of an internal combustion engine to supply of hydrogen or other gaseous fuels. Combustion Engines. 2025;202(3):162-168. https://doi.org/10.19206/CE-20....
Cabezas M, Vorraro K, Liu G, Menaca X, Im R, Turner H. Numerical analysis of hydrogen injection and mixing in Wankel rotary engines. SAE Technical Paper. 2023-24-0069. 2023. https://doi.org/10.4271/2023-2....
Decker M, Lucas S, Leist T, Gühmann C. Noise analysis of a diesel engine based on structure-borne sound signals. IFAC Proceedings Volumes. 2010;43(18):603-605. https://doi.org/10.3182/201009....
Fiołka J. Detekcja spalania stukowego w silnikach benzynowych oparta na metodzie HVD (in Polish). Przegląd Elektrotechniczny. 2021;97(3). https://doi.org/10.15199/48.20....
Fiołka J. Usage of Hilbert-Huang transform for knock detection in spark ignition engines (in Polish). Elektronika: konstrukcje, technologie, zastosowania. 2013;54(10).
Fu T, Günther M, Pischinger S, Heuer S, Steffens C. Investigation of the combustion noise of hydrogen piston engines. Int J Hydrogen Energy. 2024;87:148-158. https://doi.org/10.1016/j.ijhy....
Karim Sharifi S, Azarshab M, Khoshnam A. Experimental investigation of hydrogen fueled Wankel engine from the point of view of relationship between knock, flame velocity, flow velocity and combustion velocity. Int J Smart Energy Technol Environ Eng. 2024;3(1):23-37. https://doi.org/10.61186/setee....
Kordzlński C, Reiman M, Sendyka B, Trajdos H. Badania wpływu temperatury mieszanki paliwowo-powietrznej na widmo amplitudowo-częstotliwościowe silników o zapłonie iskrowym (in Polish). Zeszyty Naukowe Politechniki Śląskiej. Transport 1986;829(3).
Lasocki J, Orliński P, Wojs MK, Owczuk M, Matuszewska A. Hydroxyl radicals as an indicator of knocking combustion in the dual-fuel compression-ignition engine. Combustion Engines. 2017;168(1):178-185. https://doi:10.19206/CE-2017-1....
Magryta P, Skiba K, Czyż Z. Identification of noise generated by driving set of autogyro using an acoustic camera. Advances in Science and Technology. 2017;11(4):247-251. https://doi.org/10.12913/22998....
Matla J, Kaźmierczak A, Haller P, Trocki M. Hydrogen as a fuel for spark ignition combustion engines – state of knowledge and concept. Combustion Engines. 2024;196(1):73-79. https://doi.org/10.19206/CE-17....
Nguyen TA, Mikami M. Effect of hydrogen addition to intake air on combustion noise from a diesel engine. Int J Hydrogen Energy. 2013;38(10):4153-4162. https://doi.org/10.1016/j.ijhy....
Piernikarski D, Hunicz J, Komsta H. Detection of knocking combustion in a spark ignition engine using optical signal from the combustion chamber. Eksploat Niezawodn. 2013;15(3):214-220.
Różycki A. Zjawisko stuku w silniku spalinowym o zapłonie samoczynnym zasilanym dwupaliwowo (in Polish). Technika Transportu Szynowego koleje, tramwaje, metro 2013;10.
Sadegh S, Kobra H. Acoustic analysis of a single-cylinder diesel engine using magnetized biodiesel-diesel fuel blends. Heliyon. 2020;6:e05113. https://doi.org/10.1016/j.heli....
Stępień Z. Analysis of the prospects for hydrogen-fuelled internal combustion engines. Combustion Engines. 2024;197(2):32-41. https://doi.org/10.19206/CE-17....
Suijs W, De Graeve R, Verhelst S. An exploratory study of knock intensity in a large-bore heavy-duty methanol engine. Energy Conv Manag. 2024;302:118089. https://doi.org/10.1016/j.enco....
Wang YS, Liu NN, Guo H, Wang XL. An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network. Eng Appl Artif Intell. 2020;94:103765. https://doi.org/10.1016/j.enga....
Yao J, Xiang Y, Qian S, Li S, Wu S. Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method. Mech Syst Signal Pr. 2017;96:303-320. https://doi.org/10.1016/j.ymss....
Yun DU, Lee SK. Objective evaluation of the knocking sound of a diesel engine considering the temporal and frequency masking effect simultaneously. J Sound Vib. 2017;397:282-297. https://doi.org/10.1016/j.jsv.....
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.